论文标题

用于解决稀疏柱支持确定多项式系统的同质技术

Homotopy techniques for solving sparse column support determinantal polynomial systems

论文作者

Labahn, George, Din, Mohab Safey El, Schost, Éric, Vu, Thi Xuan

论文摘要

令$ \ mathbf {k} $为特征零字段,$ \ overline {\ mathbf {k}} $其代数关闭。给定一系列多项式$ \ mathbf {g} =(g_1,\ ldots,g_s)\ in \ mathbf {k} [x_1,\ ldots,x_n]^s $和polynomial matrix $ \ mathbf $ \ mathbf {f} = f} \ ldots,x_n]^{p \ times q} $,带有$ p \ leq q $,我们有兴趣确定$ v_p(\ mathbf {f},\ mathbf {g})$的隔离点,$ \ \ ymathbf { $ \ mathbf {g} $和$ \ mathbf {f} $ vanish的所有$ p $ - minor,在假设$ n = q -p + s + 1 $下。这种多项式系统出现在各种应用中,包括多项式优化和计算几何形状。我们设计了一种用于计算$ v_p(\ Mathbf {f},\ Mathbf {g})$中隔离点的随机稀疏同质算法,该算法利用了定义$ v_p(\ Mathbf {f},\ MathBf {g})的系统确定结构的优势。它的复杂性是多项式的,在此类系统的最大隔离解决方案中,共享相同的稀疏模式以及与此类系统结构相关的某些组合量。这是第一种利用输入多项式的确定性结构和稀疏性的算法。我们还为特定但重要的情况得出了复杂性界限,其中$ \ mathbf {g} $和$ \ mathbf {f} $的列满足加权度约束。当两者都通过对称组的作用而不变时,这种系统自然出现在限于代数集的临界点的计算中。

Let $\mathbf{K}$ be a field of characteristic zero with $\overline{\mathbf{K}}$ its algebraic closure. Given a sequence of polynomials $\mathbf{g} = (g_1, \ldots, g_s) \in \mathbf{K}[x_1, \ldots , x_n]^s$ and a polynomial matrix $\mathbf{F} = [f_{i,j}] \in \mathbf{K}[x_1, \ldots, x_n]^{p \times q}$, with $p \leq q$, we are interested in determining the isolated points of $V_p(\mathbf{F},\mathbf{g})$, the algebraic set of points in $\overline{\mathbf{K}}$ at which all polynomials in $\mathbf{g}$ and all $p$-minors of $\mathbf{F}$ vanish, under the assumption $n = q - p + s + 1$. Such polynomial systems arise in a variety of applications including for example polynomial optimization and computational geometry. We design a randomized sparse homotopy algorithm for computing the isolated points in $V_p(\mathbf{F},\mathbf{g})$ which takes advantage of the determinantal structure of the system defining $V_p(\mathbf{F}, \mathbf{g})$. Its complexity is polynomial in the maximum number of isolated solutions to such systems sharing the same sparsity pattern and in some combinatorial quantities attached to the structure of such systems. It is the first algorithm which takes advantage both on the determinantal structure and sparsity of input polynomials. We also derive complexity bounds for the particular but important case where $\mathbf{g}$ and the columns of $\mathbf{F}$ satisfy weighted degree constraints. Such systems arise naturally in the computation of critical points of maps restricted to algebraic sets when both are invariant by the action of the symmetric group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源