论文标题
PGST:多面性别样式转移方法
PGST: a Polyglot Gender Style Transfer method
论文作者
论文摘要
文本样式转移的最新发展使该领域比以往任何时候都更加突出。将输入风格转移到另一种方式的任务伴随着需要照顾的许多挑战(例如流利和内容保存)。在这项研究中,我们介绍了PGST,这是一种由性别域中的新型多语言文本样式转移方法,由不同的本构元组成。与先前的研究相反,通过实现我们方法的预定义元素,以多种语言应用样式转移方法是可行的。我们已经进行了用于令牌替换目的的预训练的单词嵌入,一种基于字符的令牌分类器用于性别交换目的,以及一种用于提取最流利组合的光束搜索算法。由于我们的研究中引入了不同的方法,因此我们确定了评估不同模型在使用转移文本伪造我们的性别识别模型的成功的权衡价值。为了证明我们的方法的多语言适用性,我们将我们的方法应用于英语和波斯语料库,最终将我们提出的性别识别模型击败了45.6%和39.2%。尽管这项研究的重点不仅限于一种特定的语言,但我们获得的评估结果在英语状态方法中的类比中具有很高的竞争力。
Recent developments in Text Style Transfer have led this field to be more highlighted than ever. The task of transferring an input's style to another is accompanied by plenty of challenges (e.g., fluency and content preservation) that need to be taken care of. In this research, we introduce PGST, a novel polyglot text style transfer approach in the gender domain, composed of different constitutive elements. In contrast to prior studies, it is feasible to apply a style transfer method in multiple languages by fulfilling our method's predefined elements. We have proceeded with a pre-trained word embedding for token replacement purposes, a character-based token classifier for gender exchange purposes, and a beam search algorithm for extracting the most fluent combination. Since different approaches are introduced in our research, we determine a trade-off value for evaluating different models' success in faking our gender identification model with transferred text. To demonstrate our method's multilingual applicability, we applied our method on both English and Persian corpora and ended up defeating our proposed gender identification model by 45.6% and 39.2%, respectively. While this research's focus is not limited to a specific language, our obtained evaluation results are highly competitive in an analogy among English state of the art methods.