论文标题

不确定的空间数据管理:概述

Uncertain Spatial Data Management:An Overview

论文作者

Zuefle, Andreas

论文摘要

智能手机,通用移动设备,固定传感器和卫星等技术的当前趋势以及使用该技术自愿共享丰富位置信息的新用户心态都会产生大量的地理空间和地理时空数据。这些数据洪水为发现新知识提供了巨大的潜力。但是,除了测量不精确的事实外,空间数据通常在离散观察之间插值。为了减少通信和带宽利用,数据通常会减少,从而消除了一些已知/记录的值。这些问题介绍了空间数据管理中不确定性的概念,这一方面提高了对可扩展和灵活解决方案的需求。本章的主要范围是调查用于管理,查询和采矿不确定的空间数据的现有技术。首先,本章对不确定数据进行调查的通用数据表示,解释了常用的世界语义来解释不确定数据库,并调查现有系统以处理不确定的数据。然后,本章定义了概率结果语义的概念,以区分计算单个对象概率与计算整个结果概率的任务。这很重要,因为对于许多查询,可以有效地解决对象级别概率的问题,而结果级别的概率很难计算。最后,本章介绍了一种新颖的范式,以有效地回答有关不确定数据的任何查询:等效世界的范式,该范式将可能的数据库世界的指数集分组为一组多项式数量的等效世界,这些世界可以有效地处理。使用不确定范围查询的示例提供了查询不确定空间数据的示例和用例。

Both the current trends in technology such as smartphones, general mobile devices, stationary sensors, and satellites as well as a new user mentality of using this technology to voluntarily share enriched location information produces a flood of geo-spatial and geo-spatiotemporal data. This data flood provides tremendous potential for discovering new and useful knowledge. But in addition to the fact that measurements are imprecise, spatial data is often interpolated between discrete observations. To reduce communication and bandwidth utilization, data is often subjected to a reduction, thereby eliminating some of the known/recorded values. These issues introduce the notion of uncertainty in spatial data management, an aspect raising the imminent need for scalable and flexible solutions. The main scope of this chapter is to survey existing techniques for managing, querying, and mining uncertain spatial data. First, this chapter surveys common data representations for uncertain data, explains the commonly used possible worlds semantics to interpret an uncertain database, and surveys existing system to process uncertain data. Then, this chapter defines the notion of probabilistic result semantics to distinguish the task of computing individual object probabilities versus computing entire result probabilities. This is important, as, for many queries, the problem of computing object-level probabilities can be solved efficiently, whereas result-level probabilities are hard to compute. Finally, this chapter introduces a novel paradigm to efficiently answer any kind of query on uncertain data: the Paradigm of Equivalent Worlds, which groups the exponential set of possible database worlds into a polynomial number of sets of equivalent worlds that can be processed efficiently. Examples and use-cases of querying uncertain spatial data are provided using the example of uncertain range queries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源