论文标题

关于高分辨率无人机图像的全面语义细分,用于自然灾害损害评估

Comprehensive Semantic Segmentation on High Resolution UAV Imagery for Natural Disaster Damage Assessment

论文作者

Rahnemoonfar, Maryam, Chowdhury, Tashnim, Murphy, Robin, Fernandes, Odair

论文摘要

在本文中,我们提出了一个大规模的飓风迈克尔数据集,以用于灾难情景中的视觉感知,并分析最新的深层神经网络模型以进行语义细分。该数据集由大约2000个高分辨率航空图像组成,并带有带注释的地面真实数据用于语义分割。我们讨论数据集的挑战,并在此数据集上培训最先进的方法,以评估这些方法能够识别灾难情况的能力。最后,我们讨论了未来研究的挑战。

In this paper, we present a large-scale hurricane Michael dataset for visual perception in disaster scenarios, and analyze state-of-the-art deep neural network models for semantic segmentation. The dataset consists of around 2000 high-resolution aerial images, with annotated ground-truth data for semantic segmentation. We discuss the challenges of the dataset and train the state-of-the-art methods on this dataset to evaluate how well these methods can recognize the disaster situations. Finally, we discuss challenges for future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源