论文标题

CNOT栅极在超导Transmon量子处理器中使用交叉共振纠缠的不对称性

Asymmetry of CNOT gate operation in superconducting transmon quantum processors using cross-resonance entangling

论文作者

Hurant, Travis, Stancil, Daniel D.

论文摘要

受控的不(CNOT)门通常包含在量子处理器的标准门集中,并提供了一种纠缠量子的重要方法。对于使用交叉呼声纠缠技术的固定频率码头,使用更高频率的Qubit来控制低频坐标比使用低频Qubit作为对照,可以使较短的纠缠时间更短。因此,在实现CNOT门时需要通过低频Qubit的逻辑控制,编译器可以通过使用等效电路(例如将Hadamard Gates放置在两个量子位上和之后的CNOT门前和之后,由高频量子器控制的CNOT门上)来实现此功能。但是,由于实现是不同的,具体取决于控制的控制,因此关于实现的相对性能出现了一个自然的问题。我们已经使用IBM Q网络上的量子处理器探讨了这一点。使用的基本电路由创建钟状状态的操作组成,然后进行反操作,以便在没有错误的情况下将量子置归还其初始状态(Hadamard + CNOT + CNOT + BARRIER + CNOT + CNOT + CNOT + HADAMARD)。使用此基本电路的倍数将电路深度变化。观察到随着电路深度增加的最终状态误差中的不对称性。不对称的强度和方向是唯一的,但对于测试的每对耦合量子位均可重复。该观察结果表明,应将CNOT实施中的不对称性描述为感兴趣的量子,并将其纳入电路转溶,以获得特定计算的最佳准确性。

Controlled-NOT (CNOT) gates are commonly included in the standard gate set of quantum processors and provide an important way to entangle qubits. For fixed-frequency qubits using the cross-resonance entangling technique, using the higher-frequency qubit to control the lower-frequency qubit enables much shorter entangling times than using the lower-frequency qubit as the control. Consequently, when implementing a CNOT gate where logical control by the lower-frequency qubit is needed, compilers may implement this functionality by using an equivalent circuit such as placing Hadamard gates on both qubits before and after a CNOT gate controlled by the higher-frequency qubit. However, since the implementation is different depending on which qubit is the control, a natural question arises regarding the relative performance of the implementations. We have explored this using quantum processors on the IBM Q network. The basic circuit used consisted of operations to create a Bell State, followed by the inverse operations so as to return the qubits to their initial state in the absence of errors (Hadamard + CNOT + barrier + CNOT + Hadamard). The circuit depth was varied using multiples of this basic circuit. An asymmetry in the error of the final state was observed that increased with the circuit depth. The strength and direction of the asymmetry was unique but repeatable for each pair of coupled qubits tested. This observation suggests that the asymmetry in CNOT implementation should be characterized for the qubits of interest and incorporated into circuit transpilation to obtain the best accuracy for a particular computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源