论文标题

科学深度学习

Deep Learning in Science

论文作者

Bianchini, Stefano, Müller, Moritz, Pelletier, Pierre

论文摘要

在更广泛的机器学习方法中的令人印象深刻的成就(通常称为深度学习(DL))中,人工智能(AI)的最新成功(AI)都受到了刺激。本文提供了有关DL在科学中的扩散和影响的见解。通过Arxiv.org出版物语料库上的自然语言处理(NLP)方法,我们描绘了新兴的DL技术,并确定相关搜索词的列表。这些搜索术语使我们能够从所有科学的Web科学中检索与DL相关的出版物。基于该样本,我们记录了科学系统中的DL扩散过程。我们发现i)在所有科学和世界各地的DL采用作为研究工具的采用方面,ii)DL应用领域的区域差异化,iii)从跨学科DL应用程序转变为应用领域内的纪律研究。在第二步中,我们研究了DL方法的采用如何影响科学发展。因此,我们从经验上评估了DL的采用与重组新颖性和对健康科学的科学影响的关系。我们发现,DL的采用率与重组新颖性呈负相关,但与期望和引文性能的差异呈正相关。我们的发现表明,DL(尚未?)还没有用作自动驾驶仪来浏览复杂的知识景观并推翻其结构。然而,“ DL原理”有资格作为其多功能性,作为一种以可衡量的方式进步科学的一般科学方法的核。

Much of the recent success of Artificial Intelligence (AI) has been spurred on by impressive achievements within a broader family of machine learning methods, commonly referred to as Deep Learning (DL). This paper provides insights on the diffusion and impact of DL in science. Through a Natural Language Processing (NLP) approach on the arXiv.org publication corpus, we delineate the emerging DL technology and identify a list of relevant search terms. These search terms allow us to retrieve DL-related publications from Web of Science across all sciences. Based on that sample, we document the DL diffusion process in the scientific system. We find i) an exponential growth in the adoption of DL as a research tool across all sciences and all over the world, ii) regional differentiation in DL application domains, and iii) a transition from interdisciplinary DL applications to disciplinary research within application domains. In a second step, we investigate how the adoption of DL methods affects scientific development. Therefore, we empirically assess how DL adoption relates to re-combinatorial novelty and scientific impact in the health sciences. We find that DL adoption is negatively correlated with re-combinatorial novelty, but positively correlated with expectation as well as variance of citation performance. Our findings suggest that DL does not (yet?) work as an autopilot to navigate complex knowledge landscapes and overthrow their structure. However, the 'DL principle' qualifies for its versatility as the nucleus of a general scientific method that advances science in a measurable way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源