论文标题

深度学习优化可重新配置智能表面辅助通信的稀疏天线激活

Deep Learning Optimized Sparse Antenna Activation for Reconfigurable Intelligent Surface Assisted Communication

论文作者

Zhang, Shunbo, Zhang, Shun, Gao, Feifei, Ma, Jianpeng, Dobre, Octavia A.

论文摘要

为了捕获低功率成本的大规模辐射元素的通信增益,常规可重新配置的智能表面(RIS)通常以被动模式工作。但是,由于级联的通道结构和缺乏信号处理能力,RI很难获得单个通道状态信息并优化波束成形向量。在本文中,我们为RIS的一些天线添加了信号处理单元,以部分获取通道。为了解决关键的活动天线选择问题,我们构建了一个活跃的天线选择网络,该网络利用概率采样理论选择这些活性天线的最佳位置。通过这个主动天线选择网络,我们进一步设计了两个基于深度学习(DL)的方案,即通道外推方案和梁搜索方案,以实现RIS通信系统。前者利用选择网络和卷积神经网络从主动RIS天线接收到的部分通道中推断出完整的通道,而后者采用了完全连接的神经网络,以最大程度地传输速率以最大的传输速率实现部分通道与最佳边界矢量之间的直接映射。提供了仿真结果以证明设计基于DL的方案的有效性。

To capture the communications gain of the massive radiating elements with low power cost, the conventional reconfigurable intelligent surface (RIS) usually works in passive mode. However, due to the cascaded channel structure and the lack of signal processing ability, it is difficult for RIS to obtain the individual channel state information and optimize the beamforming vector. In this paper, we add signal processing units for a few antennas at RIS to partially acquire the channels. To solve the crucial active antenna selection problem, we construct an active antenna selection network that utilizes the probabilistic sampling theory to select the optimal locations of these active antennas. With this active antenna selection network, we further design two deep learning (DL) based schemes, i.e., the channel extrapolation scheme and the beam searching scheme, to enable the RIS communication system. The former utilizes the selection network and a convolutional neural network to extrapolate the full channels from the partial channels received by the active RIS antennas, while the latter adopts a fully-connected neural network to achieve the direct mapping between the partial channels and the optimal beamforming vector with maximal transmission rate. Simulation results are provided to demonstrate the effectiveness of the designed DL-based schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源