论文标题

如何评估不同级别的理解水平的数据可视化

How to evaluate data visualizations across different levels of understanding

论文作者

Burns, Alyxander, Xiong, Cindy, Franconeri, Steven, Cairo, Alberto, Mahyar, Narges

论文摘要

了解可视化是一个多层次的过程。读者必须从数字事实中提取和推断,了解这些事实如何应用于数据和其他潜在上下文的上下文,并从数据中得出或评估结论。精心设计的可视化应支持这些理解水平。我们通过调整Bloom的分类法来诊断对可视化数据的理解水平,Bloom的分类学是教育文献的常见框架。我们描述了框架的每个级别,并提供了如何应用框架以评估沿六个知识获取级别的数据可视化的疗效 - 知识,理解,应用,分析,综合和评估的疗效。我们提出了三个案例研究,表明该框架扩展了现有方法,以全面衡量可视化设计如何促进观众对可视化的理解。尽管布鲁姆的原始分类法提出了某些领域的强大层次结构,但我们发现三个案例研究的不同级别的绩效之间的依赖关系很少。如果这种独立于新测试的可视化的层次独立性,则该分类法可以激发与通信目标相关的更有针对性的理解水平评估。

Understanding a visualization is a multi-level process. A reader must extract and extrapolate from numeric facts, understand how those facts apply to both the context of the data and other potential contexts, and draw or evaluate conclusions from the data. A well-designed visualization should support each of these levels of understanding. We diagnose levels of understanding of visualized data by adapting Bloom's taxonomy, a common framework from the education literature. We describe each level of the framework and provide examples for how it can be applied to evaluate the efficacy of data visualizations along six levels of knowledge acquisition - knowledge, comprehension, application, analysis, synthesis, and evaluation. We present three case studies showing that this framework expands on existing methods to comprehensively measure how a visualization design facilitates a viewer's understanding of visualizations. Although Bloom's original taxonomy suggests a strong hierarchical structure for some domains, we found few examples of dependent relationships between performance at different levels for our three case studies. If this level-independence holds across new tested visualizations, the taxonomy could serve to inspire more targeted evaluations of levels of understanding that are relevant to a communication goal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源