论文标题
增强机器学习光度红移与高斯混合模型
Augmenting machine learning photometric redshifts with Gaussian mixture models
论文作者
论文摘要
广域成像调查是促进我们对宇宙学,星系形成物理学以及未来几年宇宙大规模结构的理解的关键方法之一。这些调查通常需要计算大量星系(数亿至数十亿至数十亿)星系的红移 - 几乎所有这些都必须源自光度法而不是光谱。在本文中,我们研究了如何使用统计模型来了解构成星系颜色的尺度分布的种群,可以与机器学习光度红移代码相结合以改善红移估计值。特别是,我们将高斯混合模型的使用与高性能的机器学习照片-Z算法GPZ结合在一起,并表明,分别对培训和测试数据的不同颜色磁性分布进行建模和核算可以提供改进的红移估计值,可以将估计值的偏差减少到一半,并加快Algorithm的运行时间。使用来自两个单独的深区中的深度光学和近红外数据的数据来说明这些方法,其中不同的颜色粘量分布的训练和测试数据是由带有已知光谱红移的星系构建的,这些星系源自几个异质勘测。
Wide-area imaging surveys are one of the key ways of advancing our understanding of cosmology, galaxy formation physics, and the large-scale structure of the Universe in the coming years. These surveys typically require calculating redshifts for huge numbers (hundreds of millions to billions) of galaxies - almost all of which must be derived from photometry rather than spectroscopy. In this paper we investigate how using statistical models to understand the populations that make up the colour-magnitude distribution of galaxies can be combined with machine learning photometric redshift codes to improve redshift estimates. In particular we combine the use of Gaussian Mixture Models with the high performing machine learning photo-z algorithm GPz and show that modelling and accounting for the different colour-magnitude distributions of training and test data separately can give improved redshift estimates, reduce the bias on estimates by up to a half, and speed up the run-time of the algorithm. These methods are illustrated using data from deep optical and near infrared data in two separate deep fields, where training and test data of different colour-magnitude distributions are constructed from the galaxies with known spectroscopic redshifts, derived from several heterogeneous surveys.