论文标题

通过加权BMO接近跳跃的随机积分的近似

Approximation of stochastic integrals with jumps via weighted BMO approach

论文作者

Thuan, Nguyen Tran

论文摘要

本文调查了由半明星驱动的随机积分的离散时间近似,并通过加权有界平均振荡(BMO)方法跳跃。此方法可启用$ l_p $ - 估计,$ p \ in(2,\ infty)$,根据重量的不同,近似错误,它允许更改基础措施,该措施使错误估计不变。为了利用这种方法,我们提出了一种新的近似方案,该方案是根据基于基础半明星的跟踪跳跃的riemann近似校正获得的。我们还讨论了一种通过将离散时间调整为设置来优化近似率的方法。当Semimartingale的小型跳跃活动的行为就像$α$稳定的过程,$α\ in(1,2)$ in(1,2)$时,我们的方案在常规状态下达到了与Rosenbaum和Tankov [\ textit {ann {ann {ann的误差的常规融合率一样。应用。 probab。} \ textbf {24}(2014)1002--1048]。此外,我们的方法扩展到了(0,1] $的情况下,以及$ l_p $ -setting,这些$ l_p $ setting在那里未对其进行处理。作为一种应用,我们在特殊情况下应用了Semimartingale是指数级别的Lévy过程的方法,以将欧洲类型的均值偏差套在一起。

This article investigates discrete-time approximations of stochastic integrals driven by semimartingales with jumps via weighted bounded mean oscillation (BMO) approach. This approach enables $L_p$-estimates, $p \in (2, \infty)$, for the approximation error depending on the weight, and it allows a change of the underlying measure which leaves the error estimates unchanged. To take advantage of this approach, we propose a new approximation scheme obtained from a correction for the Riemann approximation based on tracking jumps of the underlying semimartingale. We also discuss a way to optimize the approximation rate by adapting the discretization times to the setting. When the small jump activity of the semimartingale behaves like an $α$-stable process with $α\in (1, 2)$, our scheme achieves under a regular regime the same convergence rate for the error as in Rosenbaum and Tankov [\textit{Ann. Appl. Probab.} \textbf{24} (2014) 1002--1048]. Moreover, our approach extends to the case $α\in (0, 1]$ and to the $L_p$-setting which are not treated there. As an application, we apply the methods in the special case where the semimartingale is an exponential Lévy process to mean-variance hedging of European type options.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源