论文标题

通勤的RITT运营商家庭的平方功能

Square functions for commuting families of Ritt operators

论文作者

Arrigoni, Olivier

论文摘要

在本文中,我们调查了针对通勤RITT操作员$(T_1,...,...,T_D)$的正方形功能的作用,该函数在一般的Banach Space $ x $上作用。首先,我们证明,如果$ d $ tuple允许$ h^\ infty $ intim $联合功能计算,那么它将验证各种平方函数估计。然后,当每个$ t_k $都是$ r $ -RITT操作员时,我们研究相反的情况。在最后一个假设下,当$ x $是$ k $ -convex空间时,我们表明,在某些bochner space $ l_p(ω; x)$ $ d $ d $ - iSomorphisms中,方函数估计了$(t_1,...,...,t_d)$的产量扩张为$(t_1,...,t_d)$。最后,我们比较了RITT运营商的$ h^\ infty $联合功能积分的$ d $ tuple,其扩张为多项式限制的同构。

In this paper, we investigate the role of square functions defined for a $d$-tuple of commuting Ritt operators $(T_1,...,T_d)$ acting on a general Banach space $X$. Firstly, we prove that if the $d$-tuple admits a $H^\infty$ joint functional calculus, then it verifies various square function estimates. Then we study the converse when every $T_k$ is a $R$-Ritt operator. Under this last hypothesis, and when $X$ is a $K$-convex space, we show that square function estimates yield dilation of $(T_1,...,T_d)$ on some Bochner space $L_p(Ω;X)$ into a $d$-tuple of isomorphisms with a $C(\mathbb{T}^d)$ bounded calculus. Finally, we compare for a $d$-tuple of Ritt operators its $H^\infty$ joint functional calculus with its dilation into a $d$-tuple of polynomially bounded isomorphisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源