论文标题
物质三光谱:理论建模和与N体模拟的比较
Matter trispectrum: theoretical modelling and comparison to N-body simulations
论文作者
论文摘要
长期以来,功率谱一直是大规模结构宇宙学分析的主力摘要统计数据。但是,重力非线性演化将宝贵的宇宙学信息从两点统计(例如功率谱)转移到高阶相关性。此外,有关原始非高斯信号的信息也在于高阶相关性。没有利用这些信息,这些信息仍然隐藏了。尽管已经研究并应用于数据的三点函数(或Biseptrum),即使没有广泛研究并应用于数据,但对四个点/三角的讨论只有有限的讨论。这是因为统计数据的高维度(在实际空间中,偏头偏度具有6个自由度),而偏斜的偏头偏斜数量高,使三角谱从数值和算法上使三角形在数值和算法上非常具有挑战性。在这里,我们通过引入I-Trispectrum,这是一个仅取决于四个$ k $ modes moduli的I-Trispectrum,以应对这一挑战。我们从真实和红移空间中的一组5000 \ textsc {quijote} n-boty模拟中对物质进行建模和测量。使用功率谱,Biseptrum和I-Trispectrum联合数据矢量协方差矩阵,我们开始量化I-Triseptrum提供的添加值。特别是,我们预测了对本地原始非高斯性振幅参数的约束的I-Triseptrum改进,$ f_ \ Mathrm {nl} $和$ g_ \ g_ \ mathrm {nl {nl} $。例如,使用完整的联合数据矢量,我们预测$ f_ \ mathrm {nl} $约束在实际($ \ sim32 \%$)的实际(redshift)空间中比没有I-Triseptrum获得的空间小。
The power spectrum has long been the workhorse summary statistics for large-scale structure cosmological analyses. However, gravitational non-linear evolution moves precious cosmological information from the two-point statistics (such as the power spectrum) to higher-order correlations. Moreover, information about the primordial non-Gaussian signal lies also in higher-order correlations. Without tapping into these, that information remains hidden. While the three-point function (or the bispectrum), even if not extensively, has been studied and applied to data, there has been only limited discussion about the four point/trispectrum. This is because the high-dimensionality of the statistics (in real space a skew-quadrilateral has 6 degrees of freedom), and the high number of skew-quadrilaterals, make the trispectrum numerically and algorithmically very challenging. Here we address this challenge by introducing the i-trispectrum, an integrated trispectrum that only depends on four $k$-modes moduli. We model and measure the matter i-trispectrum from a set of 5000 \textsc{Quijote} N-body simulations both in real and redshift space, finding good agreement between simulations outputs and model up to mildly non-linear scales. Using the power spectrum, bispectrum and i-trispectrum joint data-vector covariance matrix estimated from the simulations, we begin to quantify the added-value provided by the i-trispectrum. In particular, we forecast the i-trispectrum improvements on constraints on the local primordial non-Gaussianity amplitude parameters $f_\mathrm{nl}$ and $g_\mathrm{nl}$. For example, using the full joint data-vector, we forecast $f_\mathrm{nl}$ constraints up to two times ($\sim32\%$) smaller in real (redshift) space than those obtained without i-trispectrum.