论文标题

深度数据压缩以近似超声图像形成

Deep data compression for approximate ultrasonic image formation

论文作者

Pilikos, Georgios, Horchens, Lars, Batenburg, Kees Joost, van Leeuwen, Tristan, Lucka, Felix

论文摘要

在许多超声成像系统中,数据采集和图像形成是在单独的计算设备上进行的。数据传输已成为瓶颈,因此,有效的数据压缩至关重要。可以通过考虑许多图像形成方法依靠波 - 物质相互作用的近似值,而仅使用数据的相应部分来提高压缩率。量身定制的数据压缩可以利用这一点,但是有效地提取数据的有用部分并不总是很琐碎。在这项工作中,我们使用深层神经网络解决了此问题,以保持特定图像形成方法的图像质量进行了优化。检查了基于反射率的超声成像中使用的延迟和-AM(DAS)算法。我们提出了一种具有矢量量化的新颖编码器架构,并将图像形成作为用于端到端训练的网络层。实验表明,我们针对特定图像形成方法量身定制的我们提出的数据压缩获得了明显更好的结果,而不是随后的成像。与从线性成像运算符等级得出的理论无损压缩率相比,我们保持高图像质量的压缩率要高得多。这证明了针对特定图像形成方法定制的深超声数据压缩的巨大潜力。

In many ultrasonic imaging systems, data acquisition and image formation are performed on separate computing devices. Data transmission is becoming a bottleneck, thus, efficient data compression is essential. Compression rates can be improved by considering the fact that many image formation methods rely on approximations of wave-matter interactions, and only use the corresponding part of the data. Tailored data compression could exploit this, but extracting the useful part of the data efficiently is not always trivial. In this work, we tackle this problem using deep neural networks, optimized to preserve the image quality of a particular image formation method. The Delay-And-Sum (DAS) algorithm is examined which is used in reflectivity-based ultrasonic imaging. We propose a novel encoder-decoder architecture with vector quantization and formulate image formation as a network layer for end-to-end training. Experiments demonstrate that our proposed data compression tailored for a specific image formation method obtains significantly better results as opposed to compression agnostic to subsequent imaging. We maintain high image quality at much higher compression rates than the theoretical lossless compression rate derived from the rank of the linear imaging operator. This demonstrates the great potential of deep ultrasonic data compression tailored for a specific image formation method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源