论文标题

使用密度基质重新归一化组对Moire材料有效仿真

Efficient simulation of moire materials using the density matrix renormalization group

论文作者

Soejima, Tomohiro, Parker, Daniel E., Bultinck, Nick, Hauschild, Johannes, Zaletel, Michael P.

论文摘要

我们提出了一个无限密度 - 密度重新归一化组(DMRG)研究,该研究在魔法角度附近的扭曲双层石墨烯(TBLG)的相互作用连续模型。由于远距离的库仑相互作用和大量的轨道自由度,TBLG很难使用标准DMRG技术研究 - 甚至建造和存储Hamiltonian也已经构成了重大挑战。为了克服这些困难,我们使用最近开发的压缩程序来获得相互作用的TBLG Hamiltonian的矩阵产品操作员表示,即使包括旋转,山谷和轨道自由度,我们也表明,即使包括旋转,山谷和轨道自由度。为了基准我们的方法,我们主要关注该问题的无旋,单瓦利版本,在半填充时,我们发现基态是列不明的半学。值得注意的是,我们发现基本状态本质上是k空间的Slater决定因素,因此Hartree-Fock和DMRG为此问题提供了几乎相同的结果。我们的结果表明,可以通过DMRG有效地模拟魔术角石墨烯中远程相互作用的影响,并为未来的工作开辟了一条新的途径,以在跨型,两谷TBLG和其他Moire材料中数字研究强相关物理。

We present an infinite density-matrix renormalization group (DMRG) study of an interacting continuum model of twisted bilayer graphene (tBLG) near the magic angle. Because of the long-range Coulomb interaction and the large number of orbital degrees of freedom, tBLG is difficult to study with standard DMRG techniques -- even constructing and storing the Hamiltonian already poses a major challenge. To overcome these difficulties, we use a recently developed compression procedure to obtain a matrix product operator representation of the interacting tBLG Hamiltonian which we show is both efficient and accurate even when including the spin, valley and orbital degrees of freedom. To benchmark our approach, we focus mainly on the spinless, single-valley version of the problem where, at half-filling, we find that the ground state is a nematic semimetal. Remarkably, we find that the ground state is essentially a k-space Slater determinant, so that Hartree-Fock and DMRG give virtually identical results for this problem. Our results show that the effects of long-range interactions in magic angle graphene can be efficiently simulated with DMRG, and opens up a new route for numerically studying strong correlation physics in spinful, two-valley tBLG, and other moire materials, in future work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源