论文标题
使用神经网络的反向工程条形图
Reverse-engineering Bar Charts Using Neural Networks
论文作者
论文摘要
反向工程条形图从条形图的视觉表示中提取文本和数字信息,以支持需要基础信息的应用程序方案。在本文中,我们提出了一种基于神经网络的方法,用于反向工程条形图。我们采用基于神经网络的对象检测模型同时本地化和对文本信息进行分类。这种方法提高了文本信息提取的效率。我们设计了一个编码器框架框架,该框架集成了卷积和经常性神经网络以提取数字信息。我们进一步将注意力机制引入了框架中,以实现高准确性和鲁棒性。合成和现实世界数据集用于评估该方法的有效性。据我们所知,这项工作带头构建一种基于神经网络的完整反向工程条形图方法。
Reverse-engineering bar charts extracts textual and numeric information from the visual representations of bar charts to support application scenarios that require the underlying information. In this paper, we propose a neural network-based method for reverse-engineering bar charts. We adopt a neural network-based object detection model to simultaneously localize and classify textual information. This approach improves the efficiency of textual information extraction. We design an encoder-decoder framework that integrates convolutional and recurrent neural networks to extract numeric information. We further introduce an attention mechanism into the framework to achieve high accuracy and robustness. Synthetic and real-world datasets are used to evaluate the effectiveness of the method. To the best of our knowledge, this work takes the lead in constructing a complete neural network-based method of reverse-engineering bar charts.