论文标题

在模型不确定性下的低排名卡尔曼过滤

Low-rank Kalman filtering under model uncertainty

论文作者

Yi, Shenglun, Zorzi, Mattia

论文摘要

我们考虑了一个可靠的过滤问题,其中名义状态空间模型无法达到与实际情况不同。我们提出了一个强大的Kalman滤波器,该过滤器可以解决动态游戏:一个玩家在给定的歧义集中选择最不利的模型,而另一个玩家则设计了最佳模型的最佳滤镜。事实证明,稳健的滤波器由低级别风险敏感的riccati方程控制。最后,仿真结果显示了提出的滤波器的有效性。

We consider a robust filtering problem where the nominal state space model is not reachable and different from the actual one. We propose a robust Kalman filter which solves a dynamic game: one player selects the least-favorable model in a given ambiguity set, while the other player designs the optimum filter for the least-favorable model. It turns out that the robust filter is governed by a low-rank risk sensitive-like Riccati equation. Finally, simulation results show the effectiveness of the proposed filter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源