论文标题
动力学量子模拟的哈密顿变异对角线化
Variational Hamiltonian Diagonalization for Dynamical Quantum Simulation
论文作者
论文摘要
动态量子模拟可能是首先看到量子优势的应用之一。但是,标准的小动物方法的电路深度可以迅速超过噪声量子计算机的相干时间。这导致了有关动态仿真方法的最新建议。在这项工作中,我们旨在使变异动力学模拟更加实用和近期。我们提出了一种称为变异哈密顿对角线化(VHD)的新算法,该算法大约将给定的哈密顿量转化为可以很容易被启用的对角线形式。 VHD允许快速转发,即具有固定深度量子电路的量子计算机的相干时间之外的模拟。它还消除了Trotterization误差,并允许模拟整个希尔伯特空间。我们证明,根据平均模拟保真度,VHD成本函数的操作含义。此外,我们证明VHD成本函数不会表现出浅深度贫瘠的高原,即其梯度不会呈指数级消失。我们的证明依赖于哈密顿人的当地,因此我们将地方与训练性联系起来。我们的数值模拟验证VHD可用于快速发展动力学。
Dynamical quantum simulation may be one of the first applications to see quantum advantage. However, the circuit depth of standard Trotterization methods can rapidly exceed the coherence time of noisy quantum computers. This has led to recent proposals for variational approaches to dynamical simulation. In this work, we aim to make variational dynamical simulation even more practical and near-term. We propose a new algorithm called Variational Hamiltonian Diagonalization (VHD), which approximately transforms a given Hamiltonian into a diagonal form that can be easily exponentiated. VHD allows for fast forwarding, i.e., simulation beyond the coherence time of the quantum computer with a fixed-depth quantum circuit. It also removes Trotterization error and allows simulation of the entire Hilbert space. We prove an operational meaning for the VHD cost function in terms of the average simulation fidelity. Moreover, we prove that the VHD cost function does not exhibit a shallow-depth barren plateau, i.e., its gradient does not vanish exponentially. Our proof relies on locality of the Hamiltonian, and hence we connect locality to trainability. Our numerical simulations verify that VHD can be used for fast-forwarding dynamics.