论文标题

多指数函数组件的累积总和的积极性解释了levin-robbins-leu序列子集选择过程中的下限公式

Positivity of Cumulative Sums for Multi-Index Function Components Explains the Lower Bound Formula in the Levin-Robbins-Leu Family of Sequential Subset Selection Procedures

论文作者

Levin, Bruce, Leu, Cheng-Shiun

论文摘要

我们表现​​出某个功能的某些强阳性特性,这意味着关键的不等式,这又意味着在Levin-Robbins-Leu属于二进制结果的顺序子集选择程序中正确选择的概率的下限公式。这些属性与以前的工作相比,这些属性提供了关键不平等的更直接,更全面的证明。

We exhibit some strong positivity properties of a certain function which implies a key inequality that in turn implies the lower bound formula for the probability of correct selection in the Levin-Robbins-Leu family of sequential subset selection procedures for binary outcomes. These properties provide a more direct and comprehensive demonstration of the key inequality than was discussed in previous work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源