论文标题

显式接近X-Ramanujan图

Explicit near-fully X-Ramanujan graphs

论文作者

O'Donnell, Ryan, Wu, Xinyu

论文摘要

令$ p(y_1,\ dots,y_d,z_1,\ dots,z_e)$为一个自动化的非共同多项式,具有$ \ mathbb {c}^{r \ times r} $的系数\ dots,z_e $及其伴随$ z_1^*,\ dots,z_e^*$。假设$ y_1,\ dots,y_d $被独立的随机$ n \ times n $匹配矩阵,$ z_1,\ dots,z_e $替换为独立的随机$ n \ times n $ permainoontuntrices。假设为简单起见,$ p $的系数为$ 0 $ - $ 1 $矩阵,则可以将结果视为一种随机的$ rn $ vertex图$ g $。作为$ n \ to \ infty $,将有一个自然限制的无限图$ x $,涵盖$ g $的任何有限结果。 Bordenave和Collins的最新里程碑结果表明,对于任何$ \ Varepsilon> 0 $,随机$ G $的频谱将为$ \ VAREPSILON $ - 在Hausdorff的距离上到达$ x $的光谱(一旦适当定义的“ Trivial” eigenvalues被排除在外)。我们说$ g $是“ $ \ varepsilon $ - 完全$ x $ -ramanujan”。我们的工作有两个贡献:首先,我们研究并阐明了可以以这种方式出现的无限图$ x $的类别。其次,我们将Bordenave-Collins的结果取代:对于任何$ x $,我们提供了$ x $覆盖的明确,任意的大图$ g $,并且在$ x $中最多可以在Hausdorff Desparion of Hausdorff Desparion(非平凡)频谱。这显着概括了Mohanty等人的最新工作,该工作为每个度$ d $ $ d $(意味着$ d $ ramanujan)的明确图形(意味着所有非平凡的特征值都以$ 2 \ sqrt {d-1} + \ varepsilon $的限制)。作为我们主要技术定理的应用,我们还能够确定一系列平均案例学位的“特征值放松价值” - $ 2 $约束满意度问题。

Let $p(Y_1, \dots, Y_d, Z_1, \dots, Z_e)$ be a self-adjoint noncommutative polynomial, with coefficients from $\mathbb{C}^{r \times r}$, in the indeterminates $Y_1, \dots, Y_d$ (considered to be self-adjoint), the indeterminates $Z_1, \dots, Z_e$, and their adjoints $Z_1^*, \dots, Z_e^*$. Suppose $Y_1, \dots, Y_d$ are replaced by independent random $n \times n$ matching matrices, and $Z_1, \dots, Z_e$ are replaced by independent random $n \times n$ permutation matrices. Assuming for simplicity that $p$'s coefficients are $0$-$1$ matrices, the result can be thought of as a kind of random $rn$-vertex graph $G$. As $n \to \infty$, there will be a natural limiting infinite graph $X$ that covers any finite outcome for $G$. A recent landmark result of Bordenave and Collins shows that for any $\varepsilon > 0$, with high probability the spectrum of a random $G$ will be $\varepsilon$-close in Hausdorff distance to the spectrum of $X$ (once the suitably defined "trivial" eigenvalues are excluded). We say that $G$ is "$\varepsilon$-near fully $X$-Ramanujan". Our work has two contributions: First we study and clarify the class of infinite graphs $X$ that can arise in this way. Second, we derandomize the Bordenave-Collins result: for any $X$, we provide explicit, arbitrarily large graphs $G$ that are covered by $X$ and that have (nontrivial) spectrum at Hausdorff distance at most $\varepsilon$ from that of $X$. This significantly generalizes the recent work of Mohanty et al., which provided explicit near-Ramanujan graphs for every degree $d$ (meaning $d$-regular graphs with all nontrivial eigenvalues bounded in magnitude by $2\sqrt{d-1} + \varepsilon$). As an application of our main technical theorem, we are also able to determine the "eigenvalue relaxation value" for a wide class of average-case degree-$2$ constraint satisfaction problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源