论文标题
大规模高速公路环境的强大激光惯性进程和映射方法
A Robust Laser-Inertial Odometry and Mapping Method for Large-Scale Highway Environments
论文作者
论文摘要
在本文中,我们提出了一种新型的激光惯性进程和映射方法,以实现大规模高速公路环境中的实时,低饮和健壮的姿势估计。所提出的方法主要由四个顺序模块组成,即扫描预处理模块,动态对象检测模块,激光惯性探射仪模块和激光映射模块。扫描预处理模块使用惯性测量来补偿每次激光扫描的运动失真。然后,通过应用CNN分割网络,使用动态对象检测模块从每个激光扫描中检测和删除动态对象。在没有移动对象的情况下获得未发生的点云后,激光惯性探子仪模块使用误差状态kalman滤波器来融合激光和IMU的数据,并在高频下输出粗姿势估计。最后,激光映射模块执行了一个精细的处理步骤,并且使用“框架对模型”扫描匹配策略来创建静态全局映射。我们使用KITTI数据集和真实的高速公路场景数据集将方法与两种最先进的方法(壤土和Suma)进行比较。实验结果表明,我们的方法的性能要比实际高速公路环境中的最新方法更好,并在KITTI数据集上实现了竞争精度。
In this paper, we propose a novel laser-inertial odometry and mapping method to achieve real-time, low-drift and robust pose estimation in large-scale highway environments. The proposed method is mainly composed of four sequential modules, namely scan pre-processing module, dynamic object detection module, laser-inertial odometry module and laser mapping module. Scan pre-processing module uses inertial measurements to compensate the motion distortion of each laser scan. Then, the dynamic object detection module is used to detect and remove dynamic objects from each laser scan by applying CNN segmentation network. After obtaining the undistorted point cloud without moving objects, the laser inertial odometry module uses an Error State Kalman Filter to fuse the data of laser and IMU and output the coarse pose estimation at high frequency. Finally, the laser mapping module performs a fine processing step and the "Frame-to-Model" scan matching strategy is used to create a static global map. We compare the performance of our method with two state-ofthe-art methods, LOAM and SuMa, using KITTI dataset and real highway scene dataset. Experiment results show that our method performs better than the state-of-the-art methods in real highway environments and achieves competitive accuracy on the KITTI dataset.