论文标题

使用测试,病例,死亡和血清阳性数据的SARS-COV-2传输的半参数建模

Semi-parametric modeling of SARS-CoV-2 transmission using tests, cases, deaths, and seroprevalence data

论文作者

Bayer, Damon, Goldstein, Isaac, Fintzi, Jonathan, Lumbard, Keith, Ricotta, Emily, Warner, Sarah, Busch, Lindsay M., Strich, Jeffrey R., Chertow, Daniel S., Parker, Daniel M., Boden-Albala, Bernadette, Dratch, Alissa, Chhuon, Richard, Quick, Nichole, Zahn, Matthew, Minin, Volodymyr M.

论文摘要

适合流媒体监视数据的机械模型对于理解爆发的传输动态至关重要。但是,传输模型参数估计可能不精确,有时甚至是不可能的,因为监视数据是嘈杂的,并且对机械模型的所有方面都不详细。为了部分克服这一障碍,已经提出了贝叶斯模型来整合多个监视数据流。我们设计了一个建模框架,用于整合SARS-COV-2诊断测试和死亡率时间序列数据,以及来自横截面研究的血清阳性数据,并测试了单个数据流对推理和预测的重要性。重要的是,我们的发病率数据模型解释了执行的测试总数的变化。我们对传输速率,感染率比率以及控制真实病例发病率和正测试分数之间的功能关系的参数作为时间变化的数量和估计这些参数的变化非参数。我们将基本模型与不使用诊断测试计数或血清阳性数据的修改版本进行比较,以证明包括这些通常未使用的数据流的实用性。我们将贝叶斯数据集成方法应用于2020年3月至2021年2月之间在加利福尼亚州奥兰治县收集的Covid-19-1921年2月32---72 \%的监视数据,橙县居民中有32---72 \%经历了SARS-COV-2感染,到2021年1月中旬到2021年1月中旬。免疫力。

Mechanistic models fit to streaming surveillance data are critical to understanding the transmission dynamics of an outbreak as it unfolds in real-time. However, transmission model parameter estimation can be imprecise, and sometimes even impossible, because surveillance data are noisy and not informative about all aspects of the mechanistic model. To partially overcome this obstacle, Bayesian models have been proposed to integrate multiple surveillance data streams. We devised a modeling framework for integrating SARS-CoV-2 diagnostics test and mortality time series data, as well as seroprevalence data from cross-sectional studies, and tested the importance of individual data streams for both inference and forecasting. Importantly, our model for incidence data accounts for changes in the total number of tests performed. We model the transmission rate, infection-to-fatality ratio, and a parameter controlling a functional relationship between the true case incidence and the fraction of positive tests as time-varying quantities and estimate changes of these parameters nonparametrically. We compare our base model against modified versions which do not use diagnostics test counts or seroprevalence data to demonstrate the utility of including these often unused data streams. We apply our Bayesian data integration method to COVID-19 surveillance data collected in Orange County, California between March 2020 and February 2021 and find that 32--72\% of the Orange County residents experienced SARS-CoV-2 infection by mid-January, 2021. Despite this high number of infections, our results suggest that the abrupt end of the winter surge in January 2021 was due to both behavioral changes and a high level of accumulated natural immunity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源