论文标题

一项关于建设性分析中良好开放式封面的研究

A Study on Nice Open Covers in Constructive Analysis

论文作者

Cheng, Tong, Gao, Zhihan, Ma, Yuxin, Ning, Yuhan, Xu, Jianghao

论文摘要

像马尔可夫和主教这样的数学家努力开发建设性数学,并在经典数学分析中扩展了许多定理。 Heine Borel定理告诉我们,欧几里得空间的封闭界面子集很紧凑,但是在建设性数学中,Tseitin和Zaslavskii表明,0和1之间所有建设性实数的集合并不紧凑。我们将表明,在对[0,1]上的开放式封面提供一定的限制时,我们可以始终选择有限的子覆盖。

Mathematicians like Markov and Bishop made an effort to develop constructive mathematics and extended many theorems in classical mathematical analysis. Heine Borel theorem tells us that a closed bounded subset of Euclidean space R is compact, but in constructive mathematics, Tseitin and Zaslavskii showed that the set of all constructive real numbers between 0 and 1 is not compact. We are going to show that when giving certain restriction to the open cover on [0,1], we can however always choose a finite sub-cover.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源