论文标题
二次降低级模型的稳定域
Stability Domains for Quadratic-Bilinear Reduced-Order Models
论文作者
论文摘要
我们提出了一种计算方法来估计二次 - 双线还原模型(ROM)的稳定域,该模型是大型动力学系统的低维近似值。对于非线性ROM,不仅重要的是要证明该原点在局部渐近稳定,而且还要量化ROM的手术范围是否包含在收敛区域中。虽然准确性和结构保存仍然是非线性ROM的开发的主要重点,但迄今为止已经缺乏超出现有高度保守分析结果的计算方法。在这项工作中,对于给定的二次lyapunov函数,我们首先得出了稳定域的分析估计,该估计值相当保守,但可以有效地评估。为了扩大该估计值,我们通过解决凸优化问题来提供稳定域的最佳椭圆形估计。这为我们提供了有关ROM稳定性的有价值信息,这是预测模拟的重要方面。我们不假定一种特定的ROM方法,因此特定的吸引力是该方法适用于通过数据驱动方法获得的二次 - 双线性模型,其中ROM稳定性属性无法(每个定义)源自全阶模型。 LQG平衡的汉堡方程式的数值结果,Fitzhugh-Nagumo的适当正交分解ROM,以及汉堡方程的非侵入性ROM展示了所提出方法的可扩展性和定量优势。发现基于优化的稳定域的优化估计值最多比分析估计值低四个数量级。
We propose a computational approach to estimate the stability domain of quadratic-bilinear reduced-order models (ROMs), which are low-dimensional approximations of large-scale dynamical systems. For nonlinear ROMs, it is not only important to show that the origin is locally asymptotically stable, but also to quantify if the operative range of the ROM is included in the region of convergence. While accuracy and structure preservation remain the main focus of development for nonlinear ROMs, computational methods that go beyond the existing highly conservative analytical results have been lacking thus far. In this work, for a given quadratic Lyapunov function, we first derive an analytical estimate of the stability domain, which is rather conservative but can be evaluated efficiently. With the goal to enlarge this estimate, we provide an optimal ellipsoidal estimate of the stability domain by solving a convex optimization problem. This provides us with valuable information about stability properties of the ROM, an important aspect of predictive simulation. We do not assume a specific ROM method, so a particular appeal is that the approach is applicable to quadratic-bilinear models obtained via data-driven approaches, where ROM stability properties cannot - per definition - be derived from the full-order model. Numerical results for a LQG-balanced ROM of Burgers' equation, a proper orthogonal decomposition ROM of FitzHugh-Nagumo, and a non-intrusive ROM of Burgers' equation demonstrate the scalability and quantitative advantages of the proposed approach. The optimization-based estimates of the stability domain are found to be up to four orders of magnitude less conservative than analytical estimates.