论文标题
3D多域肝分段的无监督的Wasserstein距离引导域的适应性
Unsupervised Wasserstein Distance Guided Domain Adaptation for 3D Multi-Domain Liver Segmentation
论文作者
论文摘要
当提供大量标记的数据时,深层神经网络已显示出卓越的学习能力和源域中的普遍性。但是,训练有素的模型通常由于域移动而在目标域失败。无监督的域适应性旨在提高网络性能,应用在从源域中训练的强大模型到新的目标域。在这项工作中,我们提出了一种基于Wasserstein距离指导性的表示的方法,以实现3D多域肝分割。具体而言,我们将图像嵌入到共享内容空间上,该图像捕获了跨域和特定于域的外观空间的共享特征级信息。现有的基于信息的表示方法通常无法在多域医学成像任务中捕获完整的表示。为了减轻这些问题,我们利用Wasserstein距离来学习更多完整的表示形式,并引入了内容歧视者,以进一步促进表示分解。实验表明,我们的方法优于多模式肝分段任务的最新方法。
Deep neural networks have shown exceptional learning capability and generalizability in the source domain when massive labeled data is provided. However, the well-trained models often fail in the target domain due to the domain shift. Unsupervised domain adaptation aims to improve network performance when applying robust models trained on medical images from source domains to a new target domain. In this work, we present an approach based on the Wasserstein distance guided disentangled representation to achieve 3D multi-domain liver segmentation. Concretely, we embed images onto a shared content space capturing shared feature-level information across domains and domain-specific appearance spaces. The existing mutual information-based representation learning approaches often fail to capture complete representations in multi-domain medical imaging tasks. To mitigate these issues, we utilize Wasserstein distance to learn more complete representation, and introduces a content discriminator to further facilitate the representation disentanglement. Experiments demonstrate that our method outperforms the state-of-the-art on the multi-modality liver segmentation task.