论文标题
非线性变分波方程的行进波
Traveling Waves for the Nonlinear Variational Wave Equation
论文作者
论文摘要
我们研究非线性变分波方程的行进波解。特别是,我们展示了如何从本地,经典的局部,有限的,有界的,弱的波动波解决方案。所得的波由单调和恒定段组成,将至少一个单方面衍生物无限的点粘合在一起。将证明方法应用于Camassa-Holm方程,我们在其行驶波解决方案上恢复了一些众所周知的结果。
We study traveling wave solutions of the nonlinear variational wave equation. In particular, we show how to obtain global, bounded, weak traveling wave solutions from local, classical ones. The resulting waves consist of monotone and constant segments, glued together at points where at least one one-sided derivative is unbounded. Applying the method of proof to the Camassa--Holm equation, we recover some well-known results on its traveling wave solutions.