论文标题
图形卷积网络揭示了编码假体感觉的神经连接
Graph Convolutional Networks Reveal Neural Connections Encoding Prosthetic Sensation
论文作者
论文摘要
从神经元集合中提取刺激特征是神经假想的发展引起了极大的兴趣,这些神经假想通过电刺激直接向大脑投射感官信息。当受试者学会解释人工输入时,可以优化刺激参数的机器学习策略可以提高设备功效,提高假体性能,确保诱发感觉的稳定性以及通过消除外部输入来提高功耗。将深度学习技术扩展到非欧国人图数据的最新进展为解释神经元尖峰活动提供了一种新颖的方法。对于本研究,我们应用图形卷积网络(GCN)来推断与人工感觉信息处理有关的神经元之间的基本功能关系。使用四个红外(IR)基于ICMS的神经假体从自由行为的大鼠中收集数据,以定位IR光源。我们使用GCN来预测假体中四个刺激通道的刺激频率,这些刺激频率编码相对距离和定向信息与IR发出奖励端口。我们的GCN模型能够在由7个类别组成的多类分类问题中,在修改的序数回归性能度量中实现73.5%的峰值性能,其中机会为14.3%。此外,推断的邻接矩阵提供了编码人造感觉的基础神经回路的足够表示。
Extracting stimulus features from neuronal ensembles is of great interest to the development of neuroprosthetics that project sensory information directly to the brain via electrical stimulation. Machine learning strategies that optimize stimulation parameters as the subject learns to interpret the artificial input could improve device efficacy, increase prosthetic performance, ensure stability of evoked sensations, and improve power consumption by eliminating extraneous input. Recent advances extending deep learning techniques to non-Euclidean graph data provide a novel approach to interpreting neuronal spiking activity. For this study, we apply graph convolutional networks (GCNs) to infer the underlying functional relationship between neurons that are involved in the processing of artificial sensory information. Data was collected from a freely behaving rat using a four infrared (IR) sensor, ICMS-based neuroprosthesis to localize IR light sources. We use GCNs to predict the stimulation frequency across four stimulating channels in the prosthesis, which encode relative distance and directional information to an IR-emitting reward port. Our GCN model is able to achieve a peak performance of 73.5% on a modified ordinal regression performance metric in a multiclass classification problem consisting of 7 classes, where chance is 14.3%. Additionally, the inferred adjacency matrix provides a adequate representation of the underlying neural circuitry encoding the artificial sensation.