论文标题
使用动作模式图像和CNN智能监测老年人的新型动作识别系统,并带有转移学习
A novel action recognition system for smart monitoring of elderly people using Action Pattern Image and Series CNN with transfer learning
论文作者
论文摘要
一个独自一人住在家里的老年人的堕落会导致健康风险。如果他们没有立即参加,即使他们也可能导致他们的生命危险。在本文中,提出了一种新型的基于计算机视觉的系统,用于使用传输学习的系列卷积神经网络(SCNN)对老年人进行智能监测。当CNN直接通过视频框架训练时,它将从包括背景像素在内的所有像素中学习。通常,视频中的背景在识别动作方面没有任何贡献,实际上它会误导动作分类。因此,我们提出了一种新型的动作识别系统,我们的贡献是1)生成更通用的动作模式,这些模式不受照明和背景视频序列的影响和背景变化的影响,并消除了CNN培训中图像增强的义务2)设计SCNN架构,并在启动Neurons中呈现大量的动作,以呈现Neurons的功能,3)在研究中,3)正在通过这些神经元,以及4)扩展了训练有素的SCNN在使用转移学习中识别秋季动作的能力。
Falling of elderly people who are staying alone at home leads to health risks. If they are not attended immediately even it may lead to fatal danger to their life. In this paper a novel computer vision-based system for smart monitoring of elderly people using Series Convolutional Neural Network (SCNN) with transfer learning is proposed. When CNN is trained by the frames of the videos directly, it learns from all pixels including the background pixels. Generally, the background in a video does not contribute anything in identifying the action and actually it will mislead the action classification. So, we propose a novel action recognition system and our contributions are 1) to generate more general action patterns which are not affected by illumination and background variations of the video sequences and eliminate the obligation of image augmentation in CNN training 2) to design SCNN architecture and enhance the feature extraction process to learn large amount of data, 3) to present the patterns learnt by the neurons in the layers and analyze how these neurons capture the action when the input pattern is passing through these neurons, and 4) to extend the capability of the trained SCNN for recognizing fall actions using transfer learning.