论文标题
低角度晶界的统计力学在两个维度
Statistical Mechanics of Low Angle Grain Boundaries in Two Dimensions
论文作者
论文摘要
我们以低角度晶界(LAGB)探索嵌入在热平衡处的二维晶体中的秩序。受周期性PEIERLS电势的对称的LAGB经历了温度升高,热量转变,高于该电位在长波长下无关,而LAGB表现出横向波动,与静态距离距离差异地对数。纵向波动导致一系列融化过渡,其标志着带有通用临界指数的分歧代数bragg峰的顺序消失。通过映射到随机矩阵理论来检查我们理论的各个方面。
We explore order in low angle grain boundaries (LAGBs) embedded in a two-dimensional crystal at thermal equilibrium. Symmetric LAGBs subject to a periodic Peierls potential undergo, with increasing temperatures, a thermal depinning transition, above which the potential is irrelevant at long wavelengths and the LAGB exhibits transverse fluctuations that grow logarithmically with inter-dislocation distance. Longitudinal fluctuations lead to a series of melting transitions marked by the sequential disappearance of diverging algebraic Bragg peaks with universal critical exponents. Aspects of our theory are checked by a mapping onto random matrix theory.