论文标题

Tridia-Gonal内核和剩余的可逆操作员,并应用了Aluthge的应用

Tridiagonal kernels and left-invertible operators with applications to Aluthge transforms

论文作者

Das, Susmita, Sarkar, Jaydeb

论文摘要

给定标量$ a_n(\ neq 0)$和$ b_n $,$ n \ geq 0 $,带有带宽$ 1 $的tridiagonal内核或频段内核是开放的单位盘上的积极定义内核$ K $ \ big(((a_n + b_n z)z^n \ big)\ big((\ bar {a} _n + \ bar {b} _n \ bar {w})\ bar {w}^n \ big) \]这定义了一个复制的内核Hilbert空间$ \ MATHCAL {H} _K $(称为tridiagonal Space),分析功能的$ \ Mathbb {d} $,带有$ \ {(a_n + b_nz)z^n \} _ {我们考虑换档运算符$ \ mathcal {h} _k $上的$ m_z $,并证明$ m_z $在且仅当$ \ {| {| {a_n}/{a_n}/{a_ {a_ {n+1}}} | \} | \} | \ e {n \ geq 0} $ bock ake Is vance ake lock ake ake。我们发现,与加权偏移的情况不同,Shimorin的剩余操作员的模型未能将移位的三角形结构带到前景。实际上,当且仅当$ b_0 = 0 $或$ m_z $是加权偏移时,当且仅当shimorin型号下保留了内核$ k $的三角结构。我们证明了有关内核,玻光模型和阳性运算符的三角形不变性的具体分类结果。 我们还开发了一种计算方法来转变变化。奇怪的是,与直接内核空间技术相反,通常,木摩蛋白模型无法产生三角形空间上定义的偏移的三角形Aluthge转换。

Given scalars $a_n (\neq 0)$ and $b_n$, $n \geq 0$, the tridiagonal kernel or band kernel with bandwidth $1$ is the positive definite kernel $k$ on the open unit disc $\mathbb{D}$ defined by \[ k(z, w) = \sum_{n=0}^\infty \Big((a_n + b_n z)z^n\Big) \Big((\bar{a}_n + \bar{b}_n \bar{w}) \bar{w}^n \Big) \qquad (z, w \in \mathbb{D}). \] This defines a reproducing kernel Hilbert space $\mathcal{H}_k$ (known as tridiagonal space) of analytic functions on $\mathbb{D}$ with $\{(a_n + b_nz) z^n\}_{n=0}^\infty$ as an orthonormal basis. We consider shift operators $M_z$ on $\mathcal{H}_k$ and prove that $M_z$ is left-invertible if and only if $\{|{a_n}/{a_{n+1}}|\}_{n\geq 0}$ is bounded away from zero. We find that, unlike the case of weighted shifts, Shimorin's models for left-invertible operators fail to bring to the foreground the tridiagonal structure of shifts. In fact, the tridiagonal structure of a kernel $k$, as above, is preserved under Shimorin model if and only if $b_0=0$ or that $M_z$ is a weighted shift. We prove concrete classification results concerning invariance of tridiagonality of kernels, Shimorin models, and positive operators. We also develop a computational approach to Aluthge transforms of shifts. Curiously, in contrast to direct kernel space techniques, often Shimorin models fails to yield tridiagonal Aluthge transforms of shifts defined on tridiagonal spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源