论文标题

基于组合的双线性系统可控性表征的方法

Combinatorics-Based Approaches to Controllability Characterization for Bilinear Systems

论文作者

Cheng, Gong, Zhang, Wei, Li, Jr-Shin

论文摘要

数十年来,双线性系统的控制在系统和控制领域引起了极大的关注,这是由于它们在科学和工程学科的各种应用中的普遍性。尽管在分析可控性能方面已经进行了许多工作,但大多数使用的工具仍然是Lie代数等级条件。在本文中,我们开发了基于组合学理论和技术的替代方法来研究双线性系统的可控性。我们方法论的核心思想是通过排列或图形表示双线性系统的向量场,以便分别由置换乘以或图形操作表示。按照这些表示,我们得出了双线性系统可控性的组合表征,因此,该系统提供了对称群体和图形论的新颖应用来控制理论。此外,开发的组合方法与谎言代数分解兼容,包括cartan和非互维的分解。这种兼容性使对可控性的表示理论可以开发,这使我们能够表征由半线性和还原性谎言代数控制的双线性系统的可控性能。

The control of bilinear systems has attracted considerable attention in the field of systems and control for decades, owing to their prevalence in diverse applications across science and engineering disciplines. Although much work has been conducted on analyzing controllability properties, the mostly used tool remains the Lie algebra rank condition. In this paper, we develop alternative approaches based on theory and techniques in combinatorics to study controllability of bilinear systems. The core idea of our methodology is to represent vector fields of a bilinear system by permutations or graphs, so that Lie brackets are represented by permutation multiplications or graph operations, respectively. Following these representations, we derive combinatorial characterization of controllability for bilinear systems, which consequently provides novel applications of symmetric group and graph theory to control theory. Moreover, the developed combinatorial approaches are compatible with Lie algebra decompositions, including the Cartan and non-intertwining decomposition. This compatibility enables the exploitation of representation theory for analyzing controllability, which allows us to characterize controllability properties of bilinear systems governed by semisimple and reductive Lie algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源