论文标题

快速参数椭圆算法

A Fast Parametric Ellipse Algorithm

论文作者

Van Aken, Jerry R.

论文摘要

本文介绍了一种2-D图形算法,该算法使用移位并添加到精确地绘制任何形状和方向的椭圆上的一系列点。该算法还可以绘制以任意角度启动和结束的椭圆弧。此处描述的椭圆算法主要基于Van Aken和Simar [1,2]的早期论文,它们将Marvin Minsky的著名圆圈算法[3,4,5]扩展到椭圆,并展示如何取消Minsky原始算法中的误差源。提出了一项新的平面测试,以自动控制椭圆或椭圆弧上绘制的点之间的间距。椭圆算法和平面测试执行的大多数计算都使用定点和移位操作,因此非常适合在功能较低的处理器上运行。包括C ++源代码列表。 关键字:参数椭圆算法,旋转椭圆,明斯基圆算法,平坦,椭圆弧,结合直径,仿射不变性

This paper describes a 2-D graphics algorithm that uses shifts and adds to precisely plot a series of points on an ellipse of any shape and orientation. The algorithm can also plot an elliptic arc that starts and ends at arbitrary angles. The ellipse algorithm described here is largely based on earlier papers by Van Aken and Simar [1,2], which extend Marvin Minsky's well-known circle algorithm [3,4,5] to ellipses, and show how to cancel out the sources of error in Minsky's original algorithm. A new flatness test is presented for automatically controlling the spacing between points plotted on an ellipse or elliptic arc. Most of the calculations performed by the ellipse algorithm and flatness test use fixed-point addition and shift operations, and thus are well-suited to run on less-powerful processors. C++ source code listings are included. Keywords: parametric ellipse algorithm, rotated ellipse, Minsky circle algorithm, flatness, elliptic arc, conjugate diameters, affine invariance

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源