论文标题
一般游戏类型功能的小体积制度中的球最小
Minimality of balls in the small volume regime for a general Gamow type functional
论文作者
论文摘要
我们考虑由周长和某些内核$ g的双重积分给出的功能。我们表明,每当$ g $可接受,径向和减少时,在给定音量组中,这种功能的独特最小化是$ \ varepsilon \ ll 1 $。
We consider functionals given by the sum of the perimeter and the double integral of some kernel $g:\mathbb R^N\times\mathbb R^N\to \mathbb R^+$, multiplied by a "mass parameter" $\varepsilon$. We show that, whenever $g$ is admissible, radial and decreasing, the unique minimizer of this functional among sets of given volume is the ball as soon as $\varepsilon\ll 1$.