论文标题

具有生成对抗网络的卫星图像中无监督的变更检测

Unsupervised Change Detection in Satellite Images with Generative Adversarial Network

论文作者

Ren, Caijun, Wang, Xiangyu, Gao, Jian, Chen, Huanhuan

论文摘要

在配对卫星图像中检测变化的区域在许多遥感应用中起着关键作用。最近技术的演变可以提供具有很高空间分辨率(VHR)的卫星图像,但要应用图像核心投票的挑战,许多变更检测方法取决于其准确性。在不同时间或从不同角度拍摄的同一场景的图像或从不同角度拍摄的同一场景的图像会降低未注册的物体和毫无验证的区域,并且毫无局部的变化范围的情况下,毫无验证的效果均可进行,并且毫无疑问的效果均可构成的效果,并且毫无疑问的效果均可构成的效果,并且毫无疑问的效果均可进行。通过特殊的神经网络体系结构 - 生成的对抗网络(GAN),我们提出了一个新颖的变更检测框架,以减轻未注册对象的效果,我们提出了一个新颖的更改检测框架,以生成许多更好的核心图像。在本文中,我们表明可以通过使用拟议的扩展策略来创建训练集并优化设计的目标功能,对一对图像进行训练。优化的GAN模型将产生更好的核心图像,可以轻松地发现更改,然后使用这些生成的图像明确地通过比较策略来展示更改图,以与其他基于深度学习的方法相比,我们的方法对未注册图像的问题较少敏感,并对大多数深度学习结构进行了良好的图像和真实的方法,可以证明许多不同的情况。

Detecting changed regions in paired satellite images plays a key role in many remote sensing applications. The evolution of recent techniques could provide satellite images with very high spatial resolution (VHR) but made it challenging to apply image coregistration, and many change detection methods are dependent on its accuracy.Two images of the same scene taken at different time or from different angle would introduce unregistered objects and the existence of both unregistered areas and actual changed areas would lower the performance of many change detection algorithms in unsupervised condition.To alleviate the effect of unregistered objects in the paired images, we propose a novel change detection framework utilizing a special neural network architecture -- Generative Adversarial Network (GAN) to generate many better coregistered images. In this paper, we show that GAN model can be trained upon a pair of images through using the proposed expanding strategy to create a training set and optimizing designed objective functions. The optimized GAN model would produce better coregistered images where changes can be easily spotted and then the change map can be presented through a comparison strategy using these generated images explicitly.Compared to other deep learning-based methods, our method is less sensitive to the problem of unregistered images and makes most of the deep learning structure.Experimental results on synthetic images and real data with many different scenes could demonstrate the effectiveness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源