论文标题

除了使用分布配库模型的一维贫困分析以外的混合有序连续结果

Beyond unidimensional poverty analysis using distributional copula models for mixed ordered-continuous outcomes

论文作者

Hohberg, Maike, Donat, Francesco, Marra, Giampiero, Kneib, Thomas

论文摘要

贫困是一个多维概念,通常包括货币成果和其他福利维度,例如教育,主观幸福感或健康,以序数为准。在应用研究中,多维贫困通过在单变量回归模型中独立研究每个贫困维度或将几个贫困维度结合到标量指数中来评估。这抑制了对贫困维度之间可能变化的相互依赖性的彻底分析。我们为位置,规模和形状(Copula gamlss或分销库模型)提出了一个多元副本广义添加剂模型,以应对这一挑战。通过将Copula参数与协变量相关联,我们专门检查某些因素是否决定了贫困维度之间的依赖性。此外,指定完整的条件双变量分布,使我们能够从一个模型中为不同个体的一个模型提供了几种特征,例如贫困风险和依赖措施。我们通过研究两个重要的贫困维度来证明这种方法:收入和教育。由于收入是在持续不断的情况下以序数量表来衡量的教育水平,因此我们将双变量copula gamlss扩展到混合有序连续的结果的情况下。新模型已集成到R中的GJRM软件包中,并应用于印度尼西亚的数据。特别强调收入教育依赖性的空间变化和在教育和收入方面同时贫穷的个体群体的群体。

Poverty is a multidimensional concept often comprising a monetary outcome and other welfare dimensions such as education, subjective well-being or health, that are measured on an ordinal scale. In applied research, multidimensional poverty is ubiquitously assessed by studying each poverty dimension independently in univariate regression models or by combining several poverty dimensions into a scalar index. This inhibits a thorough analysis of the potentially varying interdependence between the poverty dimensions. We propose a multivariate copula generalized additive model for location, scale and shape (copula GAMLSS or distributional copula model) to tackle this challenge. By relating the copula parameter to covariates, we specifically examine if certain factors determine the dependence between poverty dimensions. Furthermore, specifying the full conditional bivariate distribution, allows us to derive several features such as poverty risks and dependence measures coherently from one model for different individuals. We demonstrate the approach by studying two important poverty dimensions: income and education. Since the level of education is measured on an ordinal scale while income is continuous, we extend the bivariate copula GAMLSS to the case of mixed ordered-continuous outcomes. The new model is integrated into the GJRM package in R and applied to data from Indonesia. Particular emphasis is given to the spatial variation of the income-education dependence and groups of individuals at risk of being simultaneously poor in both education and income dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源