论文标题

$ CP $ -ODD GLUONIC运算符中的QCD旋转物理

$CP$-odd gluonic operators in QCD spin physics

论文作者

Hatta, Yoshitaka

论文摘要

We explore connections between high energy QCD spin physics and $CP$-odd scalar gluonic operators $\tilde{F}^{μν}F_{μν}$ and $\tilde{F}_{μν}F^{μα}F^ν_α$, the latter being called the Weinberg operator in the context of the nucleons' electric偶极时刻。我们首先介绍与拓扑操作员$ f_ {μν} \ tilde {f}^{μν} $相关的扭曲四个广义parton分布(GPD)。这在旋转物理学中具有有趣的应用,这些应用超出了标准框架,从扭曲和扭曲的三个分布方面。在第二部分中,我们表明Weinberg操作员的非前方矩阵元素与$ G_1 $结构功能在极化深度弹性散射中的$ G_1 $结构功能成正比。

We explore connections between high energy QCD spin physics and $CP$-odd scalar gluonic operators $\tilde{F}^{μν}F_{μν}$ and $\tilde{F}_{μν}F^{μα}F^ν_α$, the latter being called the Weinberg operator in the context of the nucleons' electric dipole moment. We first introduce the twist-four generalized parton distribution (GPD) associated with the topological operator $F_{μν}\tilde{F}^{μν}$. This has interesting applications in spin physics which go beyond the standard framework in terms of twist-two and twist-three distributions. In the second part, we show that the off-forward matrix element of the Weinberg operator is proportional to a certain twist-four correction to the $g_1$ structure function in polarized deep inelastic scattering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源