论文标题

降雨渲染以评估和改善恶劣天气的鲁棒性

Rain rendering for evaluating and improving robustness to bad weather

论文作者

Tremblay, Maxime, Halder, Shirsendu Sukanta, de Charette, Raoul, Lalonde, Jean-François

论文摘要

雨水充满了水颗粒,这打破了从场景到相机不变的光线传播的共同假设。尽管众所周知,雨水会影响计算机视觉算法,但量化其影响很困难。在这种情况下,我们提出了一条降雨渲染管道,该管道可以使通用计算机视觉算法的系统评估能够控制降雨。我们提出了三种不同的方法,将合成降雨添加到现有图像数据集中:完全基于物理学;完全数据驱动;以及两者的结合。基于物理的雨水增强结合了物理粒子模拟器和准确的雨量光度建模。我们通过用户研究来验证我们的渲染方法,证明我们的降雨的判断性比最先进的人更现实。利用我们产生的雨名Kitti,CityScapes和Nuscenes数据集,我们对对象检测,语义细分和深度估计算法进行了彻底的评估,并表明它们在降级天气中的性能下降,对对象检测的订单为15%,用于对象检测的订单,对于语义率进行60%,并在深度估计中增加了60%。对我们增强的合成数据的填充可在对象检测中提高21%,语义分割为37%,深度估计为8%。

Rain fills the atmosphere with water particles, which breaks the common assumption that light travels unaltered from the scene to the camera. While it is well-known that rain affects computer vision algorithms, quantifying its impact is difficult. In this context, we present a rain rendering pipeline that enables the systematic evaluation of common computer vision algorithms to controlled amounts of rain. We present three different ways to add synthetic rain to existing images datasets: completely physic-based; completely data-driven; and a combination of both. The physic-based rain augmentation combines a physical particle simulator and accurate rain photometric modeling. We validate our rendering methods with a user study, demonstrating our rain is judged as much as 73% more realistic than the state-of-theart. Using our generated rain-augmented KITTI, Cityscapes, and nuScenes datasets, we conduct a thorough evaluation of object detection, semantic segmentation, and depth estimation algorithms and show that their performance decreases in degraded weather, on the order of 15% for object detection, 60% for semantic segmentation, and 6-fold increase in depth estimation error. Finetuning on our augmented synthetic data results in improvements of 21% on object detection, 37% on semantic segmentation, and 8% on depth estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源