论文标题
Viscode:使用Encoder-Decoder网络嵌入可视化图像中的信息
VisCode: Embedding Information in Visualization Images using Encoder-Decoder Network
论文作者
论文摘要
我们提出了一种称为Viscode的方法,用于将信息嵌入可视化图像中。该技术可以将用户指定的数据信息隐式嵌入到可视化中,同时确保编码的可视化图像不会被扭曲。粘码框架基于深度神经网络。我们建议使用可视化图像和QR码作为训练数据并设计坚固的深层编码器网络。设计的模型考虑了可视化图像的显着特征,以减少编码引起的明确视觉损失。为了进一步支持大规模编码和解码,我们考虑了信息可视化的特征,并提出了基于显着的QR码布局算法。我们在信息可视化的背景下介绍了粘码的各种实际应用,并对编码,解码成功率,反攻击能力,时间性能等的感知质量进行了全面评估。评估结果证明了粘贴的有效性。
We present an approach called VisCode for embedding information into visualization images. This technology can implicitly embed data information specified by the user into a visualization while ensuring that the encoded visualization image is not distorted. The VisCode framework is based on a deep neural network. We propose to use visualization images and QR codes data as training data and design a robust deep encoder-decoder network. The designed model considers the salient features of visualization images to reduce the explicit visual loss caused by encoding. To further support large-scale encoding and decoding, we consider the characteristics of information visualization and propose a saliency-based QR code layout algorithm. We present a variety of practical applications of VisCode in the context of information visualization and conduct a comprehensive evaluation of the perceptual quality of encoding, decoding success rate, anti-attack capability, time performance, etc. The evaluation results demonstrate the effectiveness of VisCode.