论文标题

Chevalley组的$ \ Mathrm k_2 $的中心性:一种亲组方法

Centrality of $\mathrm K_2$ for Chevalley groups: a pro-group approach

论文作者

Lavrenov, Andrei, Sinchuk, Sergey, Voronetsky, Egor

论文摘要

我们证明了$ \ mathrm {k} _2(\ mathsf {f} _4,\,r)$的中心性。这完成了$ \ mathrm k_2(φ,\,r)$的中心性证明,任何根系$ \ geq 3 $。我们的证明仅使用基本定位技术根据亲群体进行了重新重新制定。本文的另一个新结果是在规范同构$ \ mathrm {st}(φ,r)\ to \ mathrm {g} _ \ mathrm {sc}(sc}(φ,r)$中,构建一个交叉模块(φ,r)\ to \ mathrm {g} _ \ mathrm {g} _ \ mathrm {sc} $,尚未以非凡的$ $ $φ$而闻名。

We prove the centrality of $\mathrm{K}_2 (\mathsf{F}_4, \,R)$ for an arbitrary commutative ring $R$. This completes the proof of the centrality of $\mathrm K_2(Φ,\, R)$ for any root system $Φ$ of rank $\geq 3$. Our proof uses only elementary localization techniques reformulated in terms of pro-groups. Another new result of the paper is the construction of a crossed module on the canonical homomorphism $\mathrm{St}(Φ, R) \to \mathrm{G}_\mathrm{sc}(Φ, R)$, which has not been known previouly for exceptional $Φ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源