论文标题

使用Navier-Cauchy方程进行动态成像中的运动估计

Using the Navier-Cauchy equation for motion estimation in dynamic imaging

论文作者

Hahn, B. N., Kienle-Garrido, M. -L., Klingenberg, C., Warnecke, S.

论文摘要

如果在数据采集期间研究的样品是固定的,则可以充分理解层析成像图像重建。但是,如果该标本在测量过程中发生变化,则标准重建技术可能会导致计算的图像中的严重运动伪像。因此,解决动态重建问题需要在重建步骤中建模并合并有关动态的适当信息,以补偿运动。 许多动态过程可以通过部分微分方程来描述,因此可以作为运动补偿目的的其他信息。在本文中,我们将Navier-Cauchy方程式视为小弹性变形并将其表征为呼吸运动模型。我们的目标是提供一个概念概念,即通过合并该PDE提供的变形场,可以减少重建图像中各自的运动人工制品。为此,我们使用合适的初始数据和边界数据在图像重建步骤之前求解Navier-Cauchy方程。然后,将如此计算的变形场纳入分析动力重建方法中,以计算未知内部结构的图像。可行性通过计算机断层扫描中的数值示例进行了说明。

Tomographic image reconstruction is well understood if the specimen being studied is stationary during data acquisition. However, if this specimen changes during the measuring process, standard reconstruction techniques can lead to severe motion artefacts in the computed images. Solving a dynamic reconstruction problem therefore requires to model and incorporate suitable information on the dynamics in the reconstruction step to compensate for the motion. Many dynamic processes can be described by partial differential equations which thus could serve as additional information for the purpose of motion compensation. In this article, we consider the Navier-Cauchy equation which characterizes small elastic deformations and serves, for instance, as a model for respiratory motion. Our goal is to provide a proof-of-concept that by incorporating the deformation fields provided by this PDE, one can reduce the respective motion artefacts in the reconstructed image. To this end, we solve the Navier-Cauchy equation prior to the image reconstruction step using suitable initial and boundary data. Then, the thus computed deformation fields are incorporated into an analytic dynamic reconstruction method to compute an image of the unknown interior structure. The feasibility is illustrated with numerical examples from computerized tomography.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源