论文标题

二进制的神经体系结构寻找有效的对象识别

Binarized Neural Architecture Search for Efficient Object Recognition

论文作者

Chen, Hanlin, Zhuo, Li'an, Zhang, Baochang, Zheng, Xiawu, Liu, Jianzhuang, Ji, Rongrong, Doermann, David, Guo, Guodong

论文摘要

传统的神经体系结构搜索(NAS)通过自动为各种任务设计网络体系结构对计算机视觉产生了重大影响。在本文中,引入了带有二进制卷积的搜索空间的二进制神经体系结构搜索(BNA),以产生极度压缩的模型,以减少嵌入式设备上用于边缘计算的巨大计算成本。由于优化要求和巨大的建筑空间引起的学习效率低下,以及在各种计算应用程序中处理野生数据时,BNAS计算比NAS更具挑战性。为了解决这些问题,我们将缩小操作空间和通道采样引入BNA中,以大大降低搜索成本。这是通过基于绩效的策略来实现的,该策略对野生数据具有鲁棒性,该策略进一步用于放弃潜在的操作较小。此外,我们将上部置信度结合(UCB)引入1位BNA。两种优化方法用于二进制神经网络来验证我们的BNA的有效性。广泛的实验表明,所提出的BNA在CIFAR和Imagenet数据库上都达到了与NAS的可比性能。 $ 96.53 \%$ vs. $ 97.22 \%$的准确性是在CIFAR-10数据集中实现的,但具有明显的压缩型号,而$ 40 \%$ $ $ $比最先进的PC-Darts更快。在野外面部识别任务上,我们的二进制模型实现了类似于其相应的完整精确模型的性能。

Traditional neural architecture search (NAS) has a significant impact in computer vision by automatically designing network architectures for various tasks. In this paper, binarized neural architecture search (BNAS), with a search space of binarized convolutions, is introduced to produce extremely compressed models to reduce huge computational cost on embedded devices for edge computing. The BNAS calculation is more challenging than NAS due to the learning inefficiency caused by optimization requirements and the huge architecture space, and the performance loss when handling the wild data in various computing applications. To address these issues, we introduce operation space reduction and channel sampling into BNAS to significantly reduce the cost of searching. This is accomplished through a performance-based strategy that is robust to wild data, which is further used to abandon less potential operations. Furthermore, we introduce the Upper Confidence Bound (UCB) to solve 1-bit BNAS. Two optimization methods for binarized neural networks are used to validate the effectiveness of our BNAS. Extensive experiments demonstrate that the proposed BNAS achieves a comparable performance to NAS on both CIFAR and ImageNet databases. An accuracy of $96.53\%$ vs. $97.22\%$ is achieved on the CIFAR-10 dataset, but with a significantly compressed model, and a $40\%$ faster search than the state-of-the-art PC-DARTS. On the wild face recognition task, our binarized models achieve a performance similar to their corresponding full-precision models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源