论文标题

HSFM- $σ$ nn:结合前进运动预测网络和协方差预测

HSFM-$Σ$nn: Combining a Feedforward Motion Prediction Network and Covariance Prediction

论文作者

Postnikov, A., Gamayunov, A., Ferrer, G.

论文摘要

在本文中,我们提出了一种运动预测的新方法:HSFM- $σ$ nn。我们提出的方法结合了两种不同的方法:一个前馈网络,其层是基于模型的过渡函数,使用HSFM和神经网络(NN),在这些层上,以进行协方差预测。我们将将我们的方法与经典方法进行比较,以显示其局限性的协方差估计。我们还将与基于学习的方法Social-LSTM进行比较,这表明我们的方法更加精确和有效。

In this paper, we propose a new method for motion prediction: HSFM-$Σ$nn. Our proposed method combines two different approaches: a feedforward network whose layers are model-based transition functions using the HSFM and a Neural Network (NN), on each of these layers, for covariance prediction. We will compare our method with classical methods for covariance estimation showing their limitations. We will also compare with a learning-based approach, social-LSTM, showing that our method is more precise and efficient.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源