论文标题

一些新的系列以$ 1/π$的一致性动机

Some new series for $1/π$ motivated by congruences

论文作者

Sun, Zhi-Wei

论文摘要

在本文中,我们以$ 1/π$的价格推论了一个六个新系列的家庭;例如,$$ \ sum_ {n = 0}^\ infty \ frac {41673840N+47777111} {5780^n} w_n \ left(\ frac {1444} = \ frac {147758475} {\ sqrt {95} \,π} $$其中$ w_n(x)= \ sum_ {k = 0}^n \ binom nk \ binom {n+k} k \ binom {2k} k \ binom {2(n-k)} {n-k} x^k $。为此,我们将我们的系列转变为一系列$$ \ sum_ {n = 0}^\ infty \ frac {an+b} {m^n} \ sum_ {k = 0}^n \ binom nk^4 $$ 2012年由库珀(Cooper)研究。例如,我们猜测$$ \ sum_ {k = 0}^\ infty \ frac {4290k+367} {3136^k} \ binom {2k} kt_k(14,1)t_k(17,16) $ x^k $在$(x^2+bx+c)^k $的扩展中。

In this paper, we deduce a family of six new series for $1/π$; for example, $$\sum_{n=0}^\infty\frac{41673840n+4777111}{5780^n}W_n\left(\frac{1444}{1445}\right) =\frac{147758475}{\sqrt{95}\,π}$$ where $W_n(x)=\sum_{k=0}^n\binom nk\binom{n+k}k\binom{2k}k\binom{2(n-k)}{n-k}x^k$. To do so, we transform our series to series of the type $$\sum_{n=0}^\infty\frac{an+b}{m^n}\sum_{k=0}^n\binom nk^4$$ studied by Cooper in 2012. In addition, we pose $17$ new series for $1/π$ motivated by congruences; for example, we conjecture that $$\sum_{k=0}^\infty\frac{4290k+367}{3136^k}\binom{2k}kT_k(14,1)T_k(17,16)=\frac{5390}π,$$ where $T_k(b,c)$ is the coefficient of $x^k$ in the expansion of $(x^2+bx+c)^k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源