论文标题
Einstein-DE Sitter Spacetime中半连续波方程的局部解决方案的寿命估计值
Lifespan estimates for local solutions to the semilinear wave equation in Einstein-de Sitter spacetime
论文作者
论文摘要
在本文中,通过使用迭代参数,我们证明了Einstein-DE保姆时空中半连续波方程的一些爆炸结果,并得出了寿命的上限估计值。特别是,我们将重点关注需要在迭代机制中使用切片程序的关键案例。此外,为了处理主要的关键案例,我们将为二阶线性颂歌引入非自主和参数依赖性的cauchy问题,其显式解决方案将通过应用特殊功能理论来确定。
In this paper, we prove some blow-up results for the semilinear wave equation in generalized Einstein-de Sitter spacetime by using an iteration argument and we derive upper bound estimates for the lifespan. In particular, we will focus on the critical cases which require the employment of a slicing procedure in the iterative mechanism. Furthermore, in order to deal with the main critical case, we will introduce a non-autonomous and parameter-dependent Cauchy problem for a linear ODE of second-order, whose explicit solution will be determined by applying the theory of special functions.