论文标题

(IN)具有2个玩家,具有凹入估值的2个价值游戏的平衡

(In)Existence of Equilibria for 2-Players, 2-Values Games with Concave Valuations

论文作者

Georgiou, Chryssis, Mavronicolas, Marios, Monien, Burkhard

论文摘要

我们考虑2个玩家,2值最小化游戏,玩家的成本为两个值,$ a,b $,$ a <b $。玩家采用混合的策略,其成本通过单峰值估值来评估。这一广泛的估值包括所有凹面,单参数功能$ \ Mathsf {f}:[0,1] \ RightArrow \ Mathbb {R} $,具有唯一的最大点。我们的主要结果是一个不可能的结果表明:如果以$(0,1)$和$ \ MATHSF {f} \ left(\ frac {1} {2} {2} \ right)\ ne b $获得最大值,则在没有$ \ mathsf $ \ mathsf {f} $ quibrium的情况下,有2个竞争者,2-ValueS Game。 用于不可能结果的反例游戏属于一个非常稀疏的2个玩家,2值Bimatrix游戏的新类,我们称之为普通游戏。为了调查其余情况$ \ mathsf {f} \ left(\ frac {1} {2} {2} \ right)= b $,我们表明: - 每一个普通的$ n $ -strategies游戏都有$ {\ mathsf {f}} $ - 均衡 - $ {\ mathsf {f}}} \ left(\ frac {1} {2} {2} {2} \ right)= b $。我们提出了用于计算这种平衡的线性时间算法。 - 对于具有3种策略的2个玩家,我们有2个值游戏,如果$ \ mathsf {f} \ left(\ frac {1} {1} {2} {2} \ right)\ le b $,则每2个玩家,2个游戏,3-Values,3-Strategies游戏都有一个$ \ Mathsf {f} $ equirium {如果$ \ mathsf {f} \ left(\ frac {1} {2} \ right)> b $,则存在一个普通的2个玩家,2个值,3-策略游戏,而没有$ \ mathsf {f} $ - equilibium。 据我们所知,这项工作是第一个提供(几乎是完整的)答案,即对于给定的凹面函数$ \ mathsf {f} $,一个不带$ \ mathsf {f} $ equilibrium的反例游戏。

We consider 2-players, 2-values minimization games where the players' costs take on two values, $a,b$, $a<b$. The players play mixed strategies and their costs are evaluated by unimodal valuations. This broad class of valuations includes all concave, one-parameter functions $\mathsf{F}: [0,1]\rightarrow \mathbb{R}$ with a unique maximum point. Our main result is an impossibility result stating that: If the maximum is obtained in $(0,1)$ and $\mathsf{F}\left(\frac{1}{2}\right)\ne b$, then there exists a 2-players, 2-values game without $\mathsf{F}$-equilibrium. The counterexample game used for the impossibility result belongs to a new class of very sparse 2-players, 2-values bimatrix games which we call normal games. In an attempt to investigate the remaining case $\mathsf{F}\left(\frac{1}{2}\right) = b$, we show that: - Every normal, $n$-strategies game has an ${\mathsf{F}}$-equilibrium when ${\mathsf{F}}\left( \frac{1}{2} \right) = b$. We present a linear time algorithm for computing such an equilibrium. - For 2-players, 2-values games with 3 strategies we have that if $\mathsf{F}\left(\frac{1}{2}\right) \le b$, then every 2-players, 2-values, 3-strategies game has an $\mathsf{F}$-equilibrium; if $\mathsf{F}\left(\frac{1}{2}\right) > b$, then there exists a normal 2-players, 2-values, 3-strategies game without $\mathsf{F}$-equilibrium. To the best of our knowledge, this work is the first to provide an (almost complete) answer on whether there is, for a given concave function $\mathsf{F}$, a counterexample game without $\mathsf{F}$-equilibrium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源