论文标题
Nanograv 12。5年数据集:搜索各向同性随机重力波背景
The NANOGrav 12.5-year Data Set: Search For An Isotropic Stochastic Gravitational-Wave Background
论文作者
论文摘要
我们在北美纳米尔兹观测台收集的重力波动台收集的$ 12.5 $ - 年脉冲星的时机数据集中寻找各向同性随机重力波背景(GWB)。我们的分析发现了有力的随机过程的证据,该过程以幂律为模型,跨脉冲星的振幅和光谱斜率。 $ f^{ - 2/2/3} $ power-Laws频谱的贝叶斯后部,以特征性的GW菌株表示,具有$ 1.92 \ times 10^{ - 15} $和$ 5 \%$ - $ 95 \%$ - $ 95 \%$ $ 95 \%$ 1.37 $ 1.37 $ 1.37 $ - $ 2.67 $ - $ 2.67 \ times 10^$ 15} $ f_ \ mathrm {yr} = 1〜 \ mathrm {yr}^{ - 1} $。贝叶斯因素有利于平民流程与每个脉冲星的独立红噪声流程超过$ 10,000 $。但是,我们没有发现该过程具有四极空间相关性的统计学上有显着的证据,我们认为这是必要的,以声称与一般相对论一致的GWB检测。我们发现该过程既不具有单极相关性,也不具有偶极相关性,这可能分别源于参考时钟或太阳系ephemeris系统学。振幅后验具有高于先前报道的上限的显着支撑。我们用假定的内在脉冲星红噪声的贝叶斯先验来解释这一点。我们研究了信号确实是天体物理本质上确实是天体物理学的假设,我们研究了对超大质量黑洞二元种群的潜在影响。
We search for an isotropic stochastic gravitational-wave background (GWB) in the $12.5$-year pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. Our analysis finds strong evidence of a stochastic process, modeled as a power-law, with common amplitude and spectral slope across pulsars. The Bayesian posterior of the amplitude for an $f^{-2/3}$ power-law spectrum, expressed as the characteristic GW strain, has median $1.92 \times 10^{-15}$ and $5\%$--$95\%$ quantiles of $1.37$--$2.67 \times 10^{-15}$ at a reference frequency of $f_\mathrm{yr} = 1 ~\mathrm{yr}^{-1}$. The Bayes factor in favor of the common-spectrum process versus independent red-noise processes in each pulsar exceeds $10,000$. However, we find no statistically significant evidence that this process has quadrupolar spatial correlations, which we would consider necessary to claim a GWB detection consistent with general relativity. We find that the process has neither monopolar nor dipolar correlations, which may arise from, for example, reference clock or solar system ephemeris systematics, respectively. The amplitude posterior has significant support above previously reported upper limits; we explain this in terms of the Bayesian priors assumed for intrinsic pulsar red noise. We examine potential implications for the supermassive black hole binary population under the hypothesis that the signal is indeed astrophysical in nature.