论文标题
叙事地图:代表和提取信息叙事的算法方法
Narrative Maps: An Algorithmic Approach to Represent and Extract Information Narratives
论文作者
论文摘要
叙事是我们对世界的看法的基础,并且在涉及时间代表事件的所有活动中普遍存在。但是,现代的在线信息系统并未将叙述纳入其随着时间的推移发生的事件的代表。本文旨在弥合这一差距,将叙事表征理论与现代在线系统的数据相结合。我们做出了三个关键贡献:由理论驱动的叙事计算表示,一种从数据中获取这些表示的新型提取算法,以及对我们的方法的评估。特别是,鉴于视觉隐喻的有效性,我们采用了路由图隐喻来设计叙事图表示。叙事地图表示将叙述中的事件和故事说明是地图上的一系列地标和路线。我们表示的每个元素都得到形式叙事理论的相应元素的支持,因此为我们的方法提供了坚实的理论背景。我们的方法使用一种新颖的优化技术提取了叙事图的基本图结构,该技术着重于最大化连贯性,同时尊重结构和覆盖范围的约束。我们通过执行用户评估来评估表示形式,隐喻和可视化的质量来展示我们的方法的有效性。评估结果表明,叙事图表示是将复杂叙述传达给个人的有力方法。我们的发现对情报分析师,计算记者和错误信息研究人员具有影响。
Narratives are fundamental to our perception of the world and are pervasive in all activities that involve the representation of events in time. Yet, modern online information systems do not incorporate narratives in their representation of events occurring over time. This article aims to bridge this gap, combining the theory of narrative representations with the data from modern online systems. We make three key contributions: a theory-driven computational representation of narratives, a novel extraction algorithm to obtain these representations from data, and an evaluation of our approach. In particular, given the effectiveness of visual metaphors, we employ a route map metaphor to design a narrative map representation. The narrative map representation illustrates the events and stories in the narrative as a series of landmarks and routes on the map. Each element of our representation is backed by a corresponding element from formal narrative theory, thus providing a solid theoretical background to our method. Our approach extracts the underlying graph structure of the narrative map using a novel optimization technique focused on maximizing coherence while respecting structural and coverage constraints. We showcase the effectiveness of our approach by performing a user evaluation to assess the quality of the representation, metaphor, and visualization. Evaluation results indicate that the Narrative Map representation is a powerful method to communicate complex narratives to individuals. Our findings have implications for intelligence analysts, computational journalists, and misinformation researchers.