论文标题

量子步行中无序的定位

Disorder-free localization in quantum walks

论文作者

Danacı, B., Yalçınkaya, İ., Çakmak, B., Karpat, G., Kelly, S. P., Subaşı, A. L.

论文摘要

定位的现象通常是由于培养基中存在障碍而发生的。然而,某些量子系统仅由于内部相互作用的性质而允许动态定位。我们研究一个离散的时间量子步行者,该步行器表现出无序定位。量子步行者在一维晶格上移动,并通过在每个步骤绕给定的轴旋转,与现场旋转相互作用。由于旋转没有自己的动力学,因此该系统将沿旋转轴的局部自旋组件构成了大量保守矩。当相互作用较弱时,步行者的传播显示出在中间时间尺度的不断发展的概率分布中具有降低弹道尾部的次延伸行为。但是,随着相互作用的越来越强大,沃克在晶格和初始状态完全没有疾病的情况下,沃克呈指数定位。使用基质产物态ANSATZ,我们研究了现场旋转的松弛和纠缠动力学,因为它们与量子步行者的耦合。令人惊讶的是,我们发现,即使在离域政权中,纠缠的生长和放松也会缓慢地发生,这与显示本地化过渡的其他模型的Marjority不同。

The phenomenon of localization usually happens due to the existence of disorder in a medium. Nevertheless, certain quantum systems allow dynamical localization solely due to the nature of internal interactions. We study a discrete time quantum walker which exhibits disorder free localization. The quantum walker moves on a one-dimensional lattice and interacts with on-site spins by coherently rotating them around a given axis at each step. Since the spins do not have dynamics of their own, the system poses the local spin components along the rotation axis as an extensive number of conserved moments. When the interaction is weak, the spread of the walker shows subdiffusive behaviour having downscaled ballistic tails in the evolving probability distribution at intermediate time scales. However, as the interaction gets stronger the walker gets exponentially localized in the complete absence of disorder in both lattice and initial state. Using a matrix-product-state ansatz, we investigate the relaxation and entanglement dynamics of the on-site spins due to their coupling with the quantum walker. Surprisingly, we find that even in the delocalized regime, entanglement growth and relaxation occur slowly unlike marjority of the other models displaying a localization transition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源