论文标题

从顶点代数的角度来看,约瑟夫·里特的问题

A question of Joseph Ritt from the point of view of vertex algebras

论文作者

Arakawa, Tomoyuki, Kawasetsu, Kazuya, Sebag, Julien

论文摘要

令$ k $为特征零字段。本文研究了约瑟夫·F·里特(Joseph F. Ritt)在1950年提出的一个问题。确切地说,我们证明,如果$ p \ geq 2 $是整数,则对于每个整数$ i \ in \ mathbb {n} $,niltotency Index,nilpotency Index,nilpotency Index of Ring $ K \ k \ k \ t_p-i $ k \ i+a的$ t_i $ in Informentiment Informent (2)对于每对整数$(i,j)$,$ t_iu_j $的nilpotency索引$ k \ {t \}/[tu] $等于$ i+i+j+1 $。

Let $k$ be a field of characteristic zero. This paper studies a problem proposed by Joseph F. Ritt in 1950. Precisely, we prove that (1) If $p\geq 2$ is an integer, for every integer $i\in\mathbb{N}$, the nilpotency index of the image of $T_i$ in the ring $k\{T\}/[T^p]$ equals $(i+1)p-i$. (2) For every pair of integers $(i,j)$, the nilpotency index of the image of $T_iU_j$ in the ring $k\{T\}/[TU]$ equals $i+j+1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源