论文标题

关于纯编织和链接协调的注释

A Note on Pure Braids and Link Concordance

论文作者

Kuzbary, Miriam

论文摘要

结的一致性群体可以被上下文化,因为组织了有关3维空间的组织问题及其之间的关系。每3个manifold都是在某些环节上进行的手术,不一定是一个结,因此自然要询问这样的链接。 1988年,LE DIMET构建了字符串链接一致性组,并在1998年,Habegger和Lin精确地将这些组作为使用组动作的链接和协和集集的商。值得注意的是,结的协和小组是Abelian,而对于每个$ n $,$ n $ strands上的字符串链接协调组是非亚洲的,因为它包含$ n $ strands in $ n $ strands的纯编织组。在这项工作中,我们证明,即使是每个字符串链接协调组的纯辫子子组的商也是非 - 阿伯利亚人。

The knot concordance group can be contextualized as organizing problems about 3- and 4-dimensional spaces and the relationships between them. Every 3-manifold is surgery on some link, not necessarily a knot, and thus it is natural to ask about such a group for links. In 1988, Le Dimet constructed the string link concordance groups and in 1998, Habegger and Lin precisely characterized these groups as quotients of the link concordance sets using a group action. Notably, the knot concordance group is abelian while, for each $n$, the string link concordance group on $n$ strands is non-abelian as it contains the pure braid group on $n$ strands as a subgroup. In this work, we prove that even the quotient of each string link concordance group by its pure braid subgroup is non-abelian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源