论文标题

增强的二次视频插值

Enhanced Quadratic Video Interpolation

论文作者

Liu, Yihao, Xie, Liangbin, Siyao, Li, Sun, Wenxiu, Qiao, Yu, Dong, Chao

论文摘要

随着数字视频行业的繁荣,视频框架插值在计算机视觉社区中引起了持续关注,并成为行业的新兴起。已经提出并取得了许多基于学习的方法。其中,最近一种名为二次视频插值(QVI)的算法实现了吸引人的性能。它利用了高阶运动信息(例如加速度),并成功模拟了插值流的估计。但是,其产生的中间框架仍然包含一些不满意的幽灵,人工制品和不准确的运动,尤其是在发生大而复杂的运动时。在这项工作中,我们进一步提高了从三个方面的QVI的性能,并提出了增强的二次视频插值(EQVI)模型。特别是,我们采用了使用最小二乘法的整流二次流预测(RQFP)公式,以更准确地估计运动。与图像像素级的混合互补,我们引入了一个残留的上下文合成网络(RCSN),以在高维特征空间中采用上下文信息,这可以帮助模型处理更复杂的场景和运动模式。此外,为了进一步提高性能,我们设计了一个新型的多尺度融合网络(MS融合),可以被视为可学习的增强过程。拟议的EQVI模型赢得了AIM2020视频时间超分辨率挑战的第一名。

With the prosperity of digital video industry, video frame interpolation has arisen continuous attention in computer vision community and become a new upsurge in industry. Many learning-based methods have been proposed and achieved progressive results. Among them, a recent algorithm named quadratic video interpolation (QVI) achieves appealing performance. It exploits higher-order motion information (e.g. acceleration) and successfully models the estimation of interpolated flow. However, its produced intermediate frames still contain some unsatisfactory ghosting, artifacts and inaccurate motion, especially when large and complex motion occurs. In this work, we further improve the performance of QVI from three facets and propose an enhanced quadratic video interpolation (EQVI) model. In particular, we adopt a rectified quadratic flow prediction (RQFP) formulation with least squares method to estimate the motion more accurately. Complementary with image pixel-level blending, we introduce a residual contextual synthesis network (RCSN) to employ contextual information in high-dimensional feature space, which could help the model handle more complicated scenes and motion patterns. Moreover, to further boost the performance, we devise a novel multi-scale fusion network (MS-Fusion) which can be regarded as a learnable augmentation process. The proposed EQVI model won the first place in the AIM2020 Video Temporal Super-Resolution Challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源